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Abstract: In this sequel, linear algebra methods are used to study the Routley
Functor, both in single Neckers and in Necker chains. The latter display a certain
irreducible higher-order inconsistency. A definition of degree of inconsistency is
given, which classifies such inconsistency correctly with other examples of local
and global inconsistency.

1 
This paper is a sequel to Mortensen and Leishman [2009]. In the first section,
I proceed to an analysis of the role of the Routley Functor on inconsistent and
incomplete theories generated by the simplest case of a single Necker cube. It
is shown here that the Routley Functor is definable in terms of linear-algebraic
operations on matrices, and conversely, and that the Routley functor commutes
with various combinations of these operations. These results constitute a fur-
ther application of the Routley Functor outside its usual home, and contribute
further to its explanation and justification. In the second section, I show how
to extend the application of linear algebra to chains of Neckers displaying a
certain higher-order inconsistency. This enables a definition of degree of in-
consistency which is a natural generalisation of the discussion in [2009].

In the previous paper, it is shown how to represent the various consistency
and completeness properties of Necker cubes by associating each Necker with
a matrix, called the primary matrix Mp, over the field Z2. Locally inconsistent
Neckers were those with at least one row of Mp being a pair of ones [1, 1],
incomplete Neckers were those with at least one row being a pair of zeros
[0, 0], and the two globally inconsistent Neckers (the Crazy Crates, also called
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the Escher cubes) were represented either the diagonal matrix Id =

[
1 0

0 1

]
or

by the anti-diagonal matrix Anti-Id =
[
0 1

1 0

]
.

The former is standardly called Id in matrix algebra because it is the mul-
tiplicative identity, that is both left multiplication and right multiplication by
Id leaves a matrix unchanged. We see the properties of Anti-Id as we go along.

2   
2.1    
It will be recalled from linear algebra that on any matrix there are three elemen-
tary row operations, these being:

(1) RS (swap a pair of rows)

(2) RA (add one row to another)

(3) SM (multiply a row by a non-zero scalar)

It is noted that in Z2, (3) is redundant, since the only non-zero scalar is 1. Fur-
thermore, for 2× 2 matrices, RS and RA take single matrices as
arguments since there is only one pair of rows to be operated on. But RA
comes in two variants:

(4) RA1 (add one row to another and put the result in row 1)

(5) RA2 (ditto but put the result in row 2)

Now we can see:
 1 Let M be any 2× 2 matrix over Z2. Then:

(a) RS (M) = Anti-Id×M

(b) RA1(M) =

[
1 1

0 1

]
×M

(c) RA2(M) =

[
1 0

1 1

]
×M

Proof: These can be verified by straightforward matrix multiplication.

Now we can identify further operations, particularly the column duals
CS (swap the columns), CA1 (add the columns and put the result
in column 1) and CA2 (add the columns and put the result in column 2).
It can now be proved that:
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 2 (a) CS(M) = M×Anti-Id

(b) CA1(M) = M×
[
1 0

1 1

]

(c) CA2(M) = M×
[
1 1

0 1

]
Proof: These may likewise be verified by straightforward matrix
multiplication.

One more matrix operation (not elementary) is S. This is the result
of reversing all 1s and 0s in the matrix M. Think of S as the maximal
switching act on an n× n array of switches.
 3 S(M) = M + 1, where 1 is the 2× 2 matrix all of whose entries
are 1s.

Proof: Follows from the fact that in Z2, 0 + 1 = 1 and 1 + 1 = 0.

2.2     
We return to the characterisation in Section 2 of [2009] of a locally inconsis-
tent Necker as having a primary matrix with at least one row being [1, 1]. This
arises because we identify matrices as being locally inconsistent if they have
both colours R, B on at least one crossing, say C1. As noted in [2006], this is not
inconsistent by itself, but it is inconsistent if one has as part of one’s theory the
axiom of local consistency LoCon: (C)(R@C → ¬B@C), along with its equivalent:
(C)(B@C → ¬R@C). This means that the property of local consistency at the
crossing Ci can be described in terms of the equations: a.R+b.¬R = Ci. Then
we can form what can be called the inconsistency equation for a single Necker:

Mp ×
[

R

¬R

]
=

[
C1

C2

]
where Mp is its primary matrix. Clearly this is the primary equation with ¬R

substituted for B, but it has the merit of displaying explicitly the local incon-
sistency when Axiom LoCon is added.

If a = b = 1 we have the formal local inconsistency of having both R and
¬R at Ci. This representation justifies in a more direct way the claim in [2009]:
that local inconsistency in the principal matrix Mp and its associated Necker,
comes to having a [1, 1] row. Correspondingly, a row [0, 0] indicates that the
theory lacks both R@C and ¬R@C for the corresponding crossing C. That is, if
a = b = 0, we have the formal incompleteness of the theory.This also justifies
in a more direct way the claim in [2009], that incompleteness in the primary
matrix and its associated Necker comes to having a [0, 0] row.
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We recall that, if S is any set of sentences, then S∗ is defined as {A : ¬A /∈ S}.
Now the star of an inconsistent theory is an incomplete theory, and vice versa.
Reflected in the primary matrix, this motivates the definition:
 4 The Routley Functor ∗ operating on matrices M, is the op-
eration that switches all [0, 0] rows to [1, 1] rows, and vice versa, and leaves
untouched all other rows.

Now we have:
 5 ∗ = S.CS = CS.S.

Proof: Consider the first equation. There are 4 cases, being four possible
rows. Consider a row [0, 1]. CS produces [1, 0] and then S pro-
duces [0, 1], which is unchanged. The row [1, 0] is similar. Applied to the row
[1, 1] CS gives [1, 1] which when Switched gives [0, 0]. Finally, CS
[0, 0] = [1, 1] which when Switched gives [0, 0]. Hence ∗ = S.CS.
The second equation is a similar argument.

That is, S commutes with CS, and their product is the Rout-
ley Functor, which is thus definable in those terms. Also:
 6 ∗(M) = (M + 1)×Anti-Id = (M×Anti-Id) + 1

Proof: From Theorem 3, adding 1 has the effect of S; the theorem then
follows by applying Theorem 2.

 7 (a) S =∗ .CS = CS.∗

(b) CS =∗ .S = S.∗

Proof: Part (a): It suffices that the equation holds for each row. So begin with
any row of the form [1, 0]. CS produces [0, 1] which ∗ leaves unchanged.
The case [0, 1] is similar. CS [1, 1] = [1, 1] then applying ∗ gives [0, 0]. The
case [0.0] is similar. The proof of Part (b) is similar.

Thus, from Theorems 5 and 7, the operators ∗, CS and S
form a pairwise commuting triplet such that each is the product of the other
two. It is obvious that all operators are involutions. Hence we have that
Id = S2 = ∗2 = CS2 = S.∗.CS etc. The three
operators thus enjoy a close relationship, which further vindicates the Routley
∗ as a natural operation on these matrices. In the next section, it will be seen
that this relationship is continued when moving to larger figures and matrices.
 8 Anti-∗ is the operation that does to columns what Routley ∗

does to rows, that is Anti-∗ switches [0, 0] columns to [1, 1] columns and vice
versa.
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 9 (a) Anti-∗ = S.RS = RS.S

(b) S = Anti-∗.RS = RS.Anti-∗

(c) RS = Anti-∗.S = S.Anti-∗

(d) Id = S2 = Anti-∗2 = RS2 = S.Anti-∗.RS
etc.

Proof: These can all be verified by matrix calculation, or by symmetry from
the previous theorem. For example, part (a): It sufficies to prove the equation
for each column. So begin with any column of the form of the column vector
col[1, 1]. Applying RS gives col[1, 1] and then applying S gives
col[0, 0] which is Anti-∗(col[1, 1]). The argument for col[0, 0] is similar. Next
take col[1, 0]. Applying RS gives col[0, 1] then applying S gives
col[1, 0] which we began with. But this is the same as Anti-∗, which leaves such
rows unchanged. The argument for col[0, 1] is similar.

This means that the Routley Functor has a natural dual in the dual space,
which is definable in terms of S and the elementary row operation
RS . Again we see an example of three operations closely related. The
previous results can now be combined, in virtue of the fact that S is
common to both spaces, to give results like:
 10 (a) ∗.CS = Anti-∗.RS

(b) ∗ = S.∗.S

2.3 
We recall the well-known matrix operator Transpose, that is T, defined in
[2009] as the result of swapping rows for columns across the main diagonal,
ie. element aij becomes element aji. Transpose is clearly an involution, that
is MTT = M. We can also define A-, shortened to A-T, as
the operation which swaps rows and columns across the anti-diagonal. Now
we have:
 11 (a) RS.T = T.CS, and similarly with A-T for

T

(b) RS = T.CS.T, and similarly for A-T

(c) T = RS.T.CS, and similarly for A-T

(d) Anti-∗.T = T.∗

(e) Anti-∗ = T.∗.T

(f ) S.T = T.S
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(g) Anti-Id = S(Id) = RS(Id) = CS(Id).

(h) Anti-Id 2 = Id

Proof: For (a), we have: From
[
a b

c d

]
first applying CS gives

[
b a

d c

]
then applying T gives

[
b d

a c

]
whereas first applying T gives

[
a c

b d

]
then ap-

plying RS gives the same
[
b d

a c

]
.

Part (b) follows by applying T on the right to both sides of (a). Part (c)
follows by applying CS on the right to both sides of (a). For Part (d),
it is clear that first swapping [1, 1] rows for [0, 0] rows then transposing, is the
same as first transposing, then swapping [1, 1] columns for [0, 0] columns. Part
(e) follows from (d) by application of T on the right. Parts (f ) and (g) are
obvious. Part (h) may be verified by matrix multiplication.

 Note, in contrast with (d), that in general T . ∗ 6= ∗. T, that is
T and Star do not commute; this can be seen by applying these succssively to[
1 1

0 0

]
.

2.4 ,   
There is a natural order on matrices:
 12 For matrices M, N we can define M 6 N to mean that each
element of M is 6 the corresponding element of N, and M < N to mean
M 6 N and M 6= N. An operation is said to be  if it is order-
preserving, and  if it is order-reversing.

The question then arises: which of the above operations are covariant and
which contravariant?
 13 M < N iff S(N) < S(M) (S is contravariant).

Proof: If M < N then M has 0s in some places where N has 1s, and they other-
wise agree. Hence S(N) has 0s in some places where S(M) has
1s and they otherwise agree. Hence S(N) < S(M).

 14 The following are covariant: RS, CS, T, A-T.

Proof: It is evident that these operations preserve the order as they preserve
which entry corresponds to which.
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 15 The Routley ∗ and Anti-∗ are contravariant.

Proof: That the Routley ∗ is contravariant follows from Theorem 5, namely
that ∗ = S.CS. That is, CS is order-preserving, and then
S reverses the order. That Anti-∗ is contravariant is a similar argument.
Alternatively, we may invoke Theorem 11(e), namely Anti-∗ = T.∗.T, for then
T preserves order, ∗ reverses it, and finally T again preserves it.

It is an appropriate result that the Routley Functor on matrices is con-
travariant, since its counterpart on theories is order-reversing under the subset
relation ⊂ as order. But the derivation of this fact from the contravariance of
S together with the covariance of other matrix operations is novel, as
is the dual result for Anti-∗ . These results demonstrate the applicability and
richness of the Routley Functor interacting with linear algebra, which adds to
the motivation that we have seen for it up to now.

In the next section, these methods are extended to the representation
of arbitrary collections of Neckers, and the special case of several Neckers
chained together. It is seen that some modification is necessary, but also that
some of the representations of the Routley Functor remain invariant.

3  
I begin with an obvious point, that the most general case of n Neckers, colour-
ed differently and distributed randomly across a page, does not have much
interest beyond what has already been shown: they are simply described by n

matrices, each 2× 2. These could be arranged artificially into a single 2n× 2n

matrix over Z2, but its 2× 2 cells would have no interaction with one another.
The possible diagrams that can be drawn with n Neckers are too diverse to get
much theoretical purchase on, beyond the case of the single Necker.

However, there is a more interesting special case which permits an addi-
tional higher order inconsistency. This higher order inconsistency is itself a
generalisation of the global inconsistency of the previous section, in that both
arise from incompatibility between structures that are consistent in them-
selves. The special case we study is the case where n Neckers of similar colours
are chained together in a row. We can call this an -, and each Necker
from which it is constructed is called a . It should be stressed that the
colouring of the Neckers is not essential. As was seen in [2006], it serves only
as a convenient vehicle for disambiguation of the individual Neckers, that is
the case n = 1, by keeping track of faces, which can in any case be achieved
by the device of breaking the occluded edge as in knot theory. Such higher
order inconsistency is manifested in the case n = 2, as below, where each indi-
vidual Necker cell is entirely consistent, only the relation between the two is
impossible. We use this n = 2 case as an illustration of the results that follow.

Chris Mortensen, “Linear Algebra Representation of Necker Cubes ”, Australasian Journal of Logic (7) 2009, 10–25

http://www.philosophy.unimelb.edu.au/ajl/2009
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2009 17

3.1  

Figure 1: Higher Order Inconsistency

Any 2-chain of Neckers, for example the above figure, has four crossings.
As in earlier papers, each crossing can have both colours (local inconsistency),
neither (local incompleteness), or one (local consistency and completeness). It
is clear that the whole pattern of crossings for any 2-chain can be described in
the following matrix equation:

a b

c d

e f

g h

 · [RB
]

=


C1

C2

C3

C4


The left hand 4 × 2 matrix can be called the primary matrix Mp of the dia-

gram. It consists of two 2 × 2 cells arranged vertically, each being the primary
matrix of the corresponding single Necker cell of the diagram. The same in-
formation can be displayed in four individual equations:

aR + bB = C1

cR + dB = C2

eR + fB = C3

gR + hB = C4

All of the coefficients a . . . h come from Z2; this is all that is necessary since
each crossing is formed from the contribution of just two colours. It is also
noted that for the general case of n Neckers chained horizontally, there are 2n

crossings and a primary matrix of dimension 2n× 2.
In moving to the secondary matrix, the appropriate generalisation takes

into account the contributions of red and blue crossings. We recall that in
the n = 1 case, the secondary matrix Ms was the transpose of the primary
matrix, but that is not available here because the primary matrix is not square.
However, we can proceed via an intermediate construction which is available.
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So each of the two Neckers, taken separately, makes up a red face RF and a blue
face BF, so there are 4 faces, RF1 and BF1, and RF2 and BF2. In the n = 1 case,
that is the 2 × 2 construction of [2009], these are described by the secondary
equation MpT.C = F, where C is the 2× 1 column vector of crossings, and F is
the 2 × 1 column vector of faces. In moving to the case n = 2 it is trivial that
we can stack the two primary matrices one above the other:

a c

b d

e g

f h

 ·


C1

C2

C3

C4

 =


RF1

BF1

RF2

BF2


The left hand matrix is evidently: [

Mp1T

Mp2T

]
But now, proceeding in a linear fashion, we can postulate that the large red
face, as the composite of the red faces, is given by the sums of their crossings,
and hence the sums of their faces: RF = RF1 + RF2. Similarly for the blue face
is the sum of individual blue faces: BF = BF1+BF2. It is clear how to write this
in a matrix equation: it is simply:

[Mp1T, Mp2T].C = F

where the (left hand) matrix is the secondary matrix Ms having dimensions 2×4,
C is the 4×1 column vector of crossings and F is the 2×1 column vector of large
faces. This is the secondary equation for the chain of Neckers. In the case of n

Neckers, under the assumption that faces add linearly, the secondary matrix is
2× 2n, C is 2n× 1, and F remains the same.

The results of [2009] point directly to what is important for inconsistency,
either local or higher order (including global). It is the solutions of the unit
equation, ie. the set of solutions for C in the case where F is the unit vector 1
of all ones. In particular, we want to show that a Necker chain is inconsistent
iff its unit equation has solutions; and equivalently, a chain is consistent iff its
unit equation has no solutions.

To get to this, first we need a sense of which Necker chains are consistent
and which are inconsistent. Every consistent Necker chain must have all its
component cells consistent, since if any cell is inconsistent then the whole has
that as an inconsistent part. (The reverse fails, as we can see from the above
Necker chain with 2 cells, which has each of its component cells consistent,
they are simply chained together in an inconsistent way, in which the blue face
dominates in one case but the red face dominates in the other.) There are two
basic types of consistent Necker chains. (1) There are the two basic consistent
Neckers, one in which all red faces and edges are unambiguously in front of the
blue faces and edges where they occlude, and the other in which it is blue that
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dominates. (2) In addition, there are all those which can be obtained from (1) by
the deletion of one or more colours at a crossing. These are incomplete, since
they have crossings at which there are no colours; but they remain consistent,
since they are deletions from cases which are all ready consistent. See the
figure below for two consistent Neckers, one complete, the other incomplete.

Figure 2: Two Consistent Neckers: One Complete, One Incomplete

All the Necker chains other than types (1) and (2) are inconsistent, and
they come in two further forms (3) Red and blue edges both appear at the
same crossing. These are inconsistent in virtue of having an inconsistent part,
namely that individual crossing. Alternatively, (4) Red and blue never appear at
the same crossing, but red is unambiguously in front at one crossing, and blue
is unambiguously in front at another crossing. This is inconsistent because no
large face can be put together which has the same colour unambiguously in
front along the whole chain. The figure we began with is an example. It is clear
that these four possibilities are exclusive and exhaustive.

Now we need a lemma
 16 The unit equation has no solutions iff one or both of the rows of Ms is all
zeros.

Proof: R to L: if one of the rows of Ms is all zeros, there is no way to assign
numbers to the column vector C of crossings to produce a 1 in that row of F.
Hence the secondary equation has no solutions. L to R: Conversely, suppose
that neither row is all zeros. So each row has at least one 1 in it. To find a
solution to the secondary equation, (a) find the first column from the left that
is both 1s, and put a 1 in that row of C, then complete C with zeros. It is clear
that this C corresponds to the pair of equations 0+0+. . .+1.1+0+. . .+0 = 1 for
the first row, and identically for the second row, which is a solution. Otherwise
(b), find the first 1 in the first row, say column i, then the first 1 in the second
row, which must be in a different column j from that in the first row. Put 1s
in each of the corresponding rows i, j of C, and complete C with zeros. This
corresponds to the pair of equations 0 + 0 + . . . + 1.1(ith place)+0 . . . + 0 = 1,
and 0 + 0 + . . . + 1.1(jth place)+0 . . . + 0 = 1. Again this is a solution.
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Now we have the main theorem:
 17 A chain of Neckers is inconsistent iff its unit equation has solutions.

Proof: L to R: From our observations on consistent chains above, if a chain
has a secondary matrix with a row of zeros, then it is consistent. So if it is
inconsistent, then no row is all zeros. Hence by the lemma its unit equation
has solutions. R to L: Conversely, if the unit equation has solutions, then by the
lemma no row of Ms is all zeros. But we also noted above that if a secondary
matrix has no row all zeros, then it is inconsistent.

3.2   
The previous result motivates the following definition.
 18 The    of a Necker chain is the
number of independent solutions of its unit equation.

This seems intuitively reasonable: the unit equation tracks the indepen-
dent ways in which both of the large faces get a non-zero value in the sec-
ondary equation. If the product of the secondary matrix with the column vec-
tor of crossings inevitably yields a zero face no matter what the state of the
crossings, then it must have a row of zeros and so be consistent.

The test of the definition is in the results it produces, so we compute the
degree of inconsistency for several salient cases.

() For individual Neckers, that is cells, we have that the trivial Necker has as

its secondary matrix
[
1 1

1 1

]
, which has solutions for C =

[
1

0

]
and

[
0

1

]
. These

are evidently independent of one another, so the number of independent so-
lutions is at least 2 . It is at most 2 also, since there are no more independent
solutions for 2× 1 column vectors. Hence it is exactly 2. This is the maximum
degree of inconsistency for figures of this size, which accords with the intuition
that the figure with red and blue at all crossings is maximally inconsistent.

() For the important case of the globally inconsistent Necker whose sec-
ondary matrix is Id, namely Escher’s cube:

Figure 3: Global Inconsistency
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Its secondary matrix is
[
1 0

0 1

]
, and we can compute that there is just one solu-

tion, C =

[
1

1

]
. Thus the degree of inconsistency is 1, the intermediate value.

() For the consistent Neckers having at least one row of zeros, it is impos-
sible to get solutions for the unit equation, so degree of inconsistency = 0.

() The case n = 2 (maximum independent solutions = 4) contains more
possibilities, and illustrates higher order inconsistency. For example, there is
the example of the trivial Necker chain.

Figure 4: The Trivial 2-chain

This has solutions C = any of:
1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 and


0

0

0

1


These solutions are all independent, so degree of inconsistency = 4, which is
maximal as triviality should be.

() Any chain with the same colour failing to appear at all crossings (ie. con-
sistent), has a row of zeros and so has a degree of inconsistency = 0, which is
appropriate.

() Any chain with both colours at a single crossing Ci has a solution with
the value for row i = 1 and zeros elsewhere. Hence, with both colours at say 3

crossings, it has 3 independent solutions with a single 1 in that place, and has
a degree of inconsistency = 3. That is, adding inconsistent crossings increases
the degree of inconsistency.
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() Another important case is the diagram we began with, which displays
higher order inconsistency. The secondary matrix for this figure is:[

1 1 0 0

0 0 1 1

]
Its four solutions are: 

1

0

0

1

,


0

1

1

0

,


1

0

1

0

 and


0

1

0

1


However, each of these is the sum of the others, so any one can be elimi-

nated. Hence, degree of inconsistency = 3. Compare with Id above.
Conjecture: any n-chain whose cells are all copies of Id, (The Escher cube)

has a degree of inconsistency n.

3.3     
We return to the properties of the Routley Functor and related operators. The
results of the previous section cannot all remain true, because the primary
and secondary matrices are not square, so that, for example, Transpose is not
defined. Moreover, since matrices vary in size, operators must be defined dif-
ferently for different sizes.

We begin with the three elementary row operations on the space of row
vectors. First, RSij(M) is the result of swapping rows i and j in matrix
M. We suppose that M is m×n. What matters for RS is the number of
rows m on the matrix whose rows are being swapped. The basic swap operation
is performed on Idm, which is the m×m square matrix with 1 down the main
diagonal and zeros elsewhere. RSij(Idm) is thus the result of deleting
the 1s at places (i, i) and (j, j) and replacing them by 1s at (i, j) and (j, i). It is
then a simple matter to verify by matrix multiplication that RSij(M)

can be achieved by left multiplication of M by RSij(Idm).
The second elementary row operation is RA1ij, which is the result

of adding row i to row j, and putting the result in row i. To define this, take
Idm and add a 1 in place (i, j) = Idm + [aij = 1].Then it is a simple matter to
verify by matrix multiplication that left multiplication of M by this matrix has
the effect. The matrix is also the result of applying RA to Id itself. In
the previous section, there is also distinguished RA2ij, which adds row
i to row j and puts the result in row j. But since RA2ij = RA1ji,
this is not proceeded with.

The third elementary matrix operation is scalar multiplication. But since
we remain in linear algebra over Z2, then as in the single-cell Necker, the only
nonzero scalar is 1, so this operation is redundant.
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These can be summarised as:
 19 (a) RSij(M) = RSij(Id)×M

(b) RAij(M) = RAij(Id)×M = (Id + [aij = 1])×M

There are also elementary column operations CS and CA.
They can also be defined in terms of (right) multiplication by a suitable ma-
trix. In each case, the effect is obtained by performing the same operation on
Idn, then right multiplication of M by this. Note the index n of Idn. This is
necessary as right multiplication of a matrix M which is m × n, requires that
Id have n rows.

Then there is the useful and natural operation S, (not an elementary
operation). This is the result of changing all 0s to 1s and versa. This effect can
be obtained by adding 1mn, the m× n matrix of 1s. In summary:
 20 (a) CS(M) = M× CS(Id)

(b) CA(M) = M× CA(Id).

(c) S(M) = M + 1

3.4    
We recall that the Routley Functor interchanges rows (1, 1) for (0, 0), leaving
rows (0, 1)and (1, 0) alone. Clearly then, in the general case, the Routley func-
tor operates naturally only on matrices with 2 columns. Thus it operates on
the primary matrix Mp, which is 2n× 2.

In passing, we note that the effect of applying this operation to a chain
of Neckers is to produce another chain, the chain obtained taking all crossings
lacking any colour, and filling in with both colours, and taking any crossing with
both colours and erasing both colours. That is, the Routley star is a natural
transformation from Necker chains to Necker chains.

But it also has natural relationships with the above linear algebraic opera-
tors.
 21 (a) ∗ = S.CS = CS.S

(b) S =∗ .CS = CS.∗

(c) CS =∗ .S = S.∗

(d) ∗ = S.∗.S

Proof: Ad (a): It is clear that operating on rows (1, 1) and (0, 0) in either or-
der changes either into the other. On the other hand, operating on rows (0, 1)

with CS changes it to (1, 0) and then S changes it back. Simi-
larly for the opposite order of operation. Similarly for operating on rows (1, 0)

and (0, 1). Ad (b): CS(1, 1) = (1, 1), and then ∗(1, 1) = (0, 0) which
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is the effect of S on the original. The other rows are similar. Ad (c):
S(1, 0) = (0, 1), and then ∗(0, 1) = (0, 1) which is the effect of C-
S on the original. The other rows are similar. Ad (d): ∗ has no effect on
rows (0, 1)and (1, 0), so the effect is two consecutive applications of S,
which is the identity. But for rows (1, 1) and (0, 0), ∗ toggles between them, as
does S.

We recall that there is also A-∗ , which does to columns what ∗ does to
rows. This means that Anti-∗ only operates on matrices with two rows. With
appropriate restrictions on the size of matrices then, we have, using similar
calculations to the previous theorem:
 22 (a) Anti-∗ = S.RS = RS.S

(b) S = Anti-∗.RS = RS.Anti-∗

(c) RS = Anti-∗.S = S.Anti-∗

(d) Anti-∗ = S.Anti-∗.S
Note that we cannot put together part (b) of Theorems 21 and 22 to draw

the conclusion as in Theorem 10 that ∗.CS = Anti-∗.RS, be-
cause the size of the S matrix is in general different on the  from
the .

However, we can say that the above results linking the Routley functor with
other linear algebra operators remain true as generalisations of the results of
the first section, and thus demonstrate the naturalness in this setting of the
Routley functor and its dual, Anti-∗.

3.5 ,   
Matrices of the same dimensions have the same definition of order as in the
previous section, and the same arguments given there continue to hold. So we
have:
 23 (a) The following operators are covariant: RS , CS

(b) The following operators are contravariant: ∗, Anti-∗, S.
Summing up this section: the main results are the description of chains

of Neckers, the identification of higher-order inconsistencies arising from the
impossible juxtaposition of consistent Necker cells, the definition of degree
of inconsistency, and the method of calculation of degree of inconsistency as
illustrated by a number of salient cases. In addition, it was seen that the Rout-
ley functor operates naturally on Necker chains, and is interdefinable in this
context with other linear algebra operators.
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4 
This paper demonstrates an application of linear algebra to the study of incon-
sistent and incomplete geometrical structures, the Necker cubes. We were able
to show in the single-cell case that global and local consistency can be naturally
classified together by matrix methods. Furthermore, when extending to chains
of Neckers, it can be seen that the classification extends naturally to a kind
of higher order inconsistency. The Routley Functor is shown to play a signif-
icant role in these classifications, and commutes with various linear-algebraic
operations.
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