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Abstract: We apply linear algebra to the study of the inconsistent figure known
as the Crazy Crate. Disambiguation by means of occlusions leads to a class of
sixteen such figures: consistent, complete, both and neither. Necessary and suffi-
cient conditions for inconsistency are obtained.

1 
In Mortensen [2006], a logical analysis of the inconsistent image known as
the “Crazy Crate” was undertaken, with the aim of demonstrating what the
inconsistency amounts to.

Figure 1: The Crazy Crate
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The crazy crate, appearing for example in Escher’s masterpiece Belvedere,
is a version of the well-known Necker cube, with the important proviso that
the standard Necker cube is an ambiguous figure, not inconsistent, whereas
the crazy crate disambiguates the figure and produces an inconsistency. In the
above paper, disambiguation by means of colours and the convention of oc-
clusion used in the theory of knots enabled sixteen versions of the standard
Necker to be identified. Some of these were consistent, some complete, some
both and some neither. In particular, two versions of the crazy crate were
found, and these were classified as having a certain higher inconsistency, which
was termed “global inconsistency”. In the present paper, we apply matrix al-
gebra to obtain necessary and sufficient conditions for these various classifi-
cations, including global inconsistency. The main project is to find conditions
which classify local and global inconsistency both together as kinds of incon-
sistency. We remain with these sixteen cases, as representing an essential “base
case” whose properties need to be set out if the crazy crate is to be described.
However, in a sequel these results are extended to the more general case of
multiply chained Neckers. For convenience of reference, we reproduce the
sixteen cases here. The standard Necker is the top left-hand image, and the
two crazy crates are the two bottom right-hand images.

Figure 2: Sixteen Neckers
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2    
In [2006] the faces and their edges were coloured red (R) and blue (B) respec-
tively (with connecting edges coloured green). Each Necker diagram above
has two places where red crosses over (occludes) blue or vice versa. These are
termed crossings, C1 (left hand crossing) and C2 (right hand crossing). The
Neckers differ from one another in just two places, hence we ignore all other
data on the images as constant and therefore irrelevant to their differences.
The presence or absence of R and B at the crossings C1 and C1 completely dis-
tinguishes all sixteen. Thus for each cube there is a pair of simultaneous linear
equations:

a.R + b.B = C1

c.R + d.B = C2

where each of a, b, c, d are in {0, 1}. For example, “1.R + 0B = C1” can be read
“1 of red plus 0 of blue make up crossing C1” In turn, the simultaneous linear
equations can be written in the usual fashion as a matrix multiplication over
the field Z2,that is Z mod 2: [

a b

c d

]
.

[
R

B

]
=

[
C1

C2

]
We call this the   of the cube, and the left hand 2×2 matrix
the  . If M is a primary matrix, we also denote it as Mp.Given
a matrix designated as a primary matrix , the Necker figure can obviously be
recovered.

In [2006], the two crazy crates are described as locally consistent but globally
inconsistent, as exemplified by a failure of (consistent) face building. The status of
faces in these figures can also be represented by linear equations over Z2.We
write:

a′C1 + b′C2 = RF

c′C1 + d′C2 = BF

where as before the (primed) coefficients are from {0, 1}. For example, “1.C1 +

0.C2 = RF” can be read as “The red face is made up by having red at C1 and not
having red at C2” As before, these equations can be written in matrix form:[

a′ b′

c′ d′

]
.

[
C1

C2

]
=

[
RF

BF

]
We call this the   of the corresponding Necker, and the
left hand 2× 2 matrix its  , denoted by Ms.

In linear algebra, the  of a matrix M, written MT, is the matrix
made up by exchanging rows for columns and vice versa. That is, if aij is is
the element in M in the i-th row and j-th column, and a′

ij is the element of
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MT in the i-th row and j-th column, then a′
ij = aji. MT is the reflection of M

across the main diagonal. Evidently, the operation T is an involution, that is
MTT = M.
 1 Let N be any Necker cube with primary matrix Mp and secondary matrix
Ms Then Ms = MT

p .

Proof: From the simultaneous equations, we can deduce that the red face is
made up of contributions of a.R at C1 and c.R at C2. Thus, a.C1 + c.C2 =

RF. The other case is similar, giving b.C1 + d.C2 = BF. Assembling the two
equations into the secondary matrix gives the result. (Alternatively, one may
prove this result by enumeration of cases and inspection thereof.)

It is recalled from [2006] that a Necker cube was classified as  -
 just in case it has both colours, R and B, at one or both crossings.
It is apparent that this corresponds to having all 1s in either row of its primary
matrix. The special case where both rows are all 1s is the Necker cube familiar
from psychology texts. We call its matrix the  matrix, corresponding
to the trivial theory (in which every statement holds). The locally inconsistent
Neckers are the left hand column of the diagram; the trivial Necker being the
topmost. Thus, a Necker is locally consistent just in case no row of Mp is all
1s.

A Necker was further classified as  if one or both crossings
have no colours present. It is apparent that this corresponds to having all 0s in
either or both rows of Mp. The case where both rows are all 0s corresponds to
the theory having no (non-logical) statements holding. The incomplete Neck-
ers are the two middle columns of the diagram. Thus, a Necker is complete if
no row of Mp is all 0s.

Of the four locally consistent and complete Neckers (the right hand col-
umn), the bottom two, the crazy crates, are inconsistent in a further global
sense. As noted before, this was explained as a failure of consistent face build-
ing. A consistent face is built just in case its colour is present at both crossings,
or absent at both crossings, corresponding to being unambiguously the front
face, or unambiguously the back face. It is apparent, therefore, that a face is
built just in case its corresponding row in the secondary matrix is all 1s, or all
0s. So, for these four locally consistent and complete Neckers, to be globally
consistent is to have both faces consistently; that is no row on Ms is all 1s and
no row is all 0s. Since Ms = MT

p , it follows that no column on Mp is all 1s and
no column is all 0s. These are the top two Neckers of the fourth column.

On the other hand, since the two crazy crates also have no rows all 1s and
no row is all 0s, we can isolate these two globally inconsistent Neckers as having
respectively one of the two primary matrices:[

1 0

0 1

]
and

[
0 1

1 0

]
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These are the crazy crates. The first of these is the  matrix whose
leading diagonal is all 1s and there are just 0s elsewhere, and we name it 
here. The second is the  matrix whose antidiagonal is all 1s
and there are just 0s elsewhere, and we name it - here. We observe,
in passing, that in each case, M = MT, and that, in general, Mp = Ms iff
M = MT.

We utilise this information in what follows.

3 
We proceed to several “tests” for inconsistency and incompleteness. We are
expecially seeking matrix-algebraic conditions which group together the two
kinds of inconsistency as being similar. The first obvious test to apply is the
nature of the determinant of the matrix. Unfortunately, as we see, while this
yields some information, it is a blunt instrument.

The  of the primary matrix given at the beginning of the
last section is the sum (ad − bc), that is the product of main diagonal less the
product of the antidiagonal. The determinant of a matrix M is written Det(M).
(In n×n matrices the definition of the determinant is more complicated. The
reader also is reminded that the arithmetic being used is that of Z2.)
 2 If Det(Mp) 6= 0, then Mp is inconsistent.

Proof: If ad − bc 6= 0, then we have two cases. Case (a): a = d = 1 and one
or both of b, c = 0. If one of b, c = 1 then we have three 1s in the matrix, so
that one row is all 1s, so that the matrix is inconsistent. If both b, c = 0, we
have the diagonal matrix which was identified above as one of the two globally
inconsistent Neckers. Case (b): b = c = 1 and one or both of a, d = 0. If one
of a, d = 1 then we have three 1s in the matrix which is inconsistent. If both
a, d = 0, we have the antidiagonal matrix which was identified above as the
other of the two globally inconsistent Neckers.

 We note that the converse fails in three cases: the trivial matrix
and the two inconsistent and incomplete matrices (a row of 1s and a row of 0s in
Mp). Thus it would seem that the determinant is not such a useful instrument
in identifying consistency and inconsistency.

4 
A more precise test is given by the concept of nullity. From linear algebra, we
have the notion of the null space. The   of an n × n matrix M is
the space of (consistent) solutions of the matrix equation Mx = 0˜, where the
unknown x is an n-ary column vector of variables, and 0˜ is the n−ary column
vector which is all zeros. The  of the matrix is the dimension of the
null space. Note that the matrix equation Mx = 0˜ always has at least one
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solution, namely all the variables equal to zero. If this is the only solution, it is
termed the zero-dimensional solution.
 3 Let Mp be non-trivial. Then Mp is complete iff the nullity of Mp is zero.

Proof: Left to Right: If Mp is complete then no row is all 0s. If Mp is also
non-trivial, then not all entries are 1s. So the number of 1s is 2 or 3. If any row
is all 1s, then only the solution (R, B) = (0, 0) is possible. If no row is all 1s then
Mp is either the diagonal matrix or the antidiagonal matrix. In each case the
nullity is zero since the occurrences of 1 force that variable to be zero. Right
to Left: If Mp is incomplete then one of both rows are all 0s. Any row of all 0s
does not disturb the set of solutions, since everything is a solution to it. Thus
the space of solutions is that of the other row. But this must have at least one
other solution: if the row is both 1s then [1, 1] is a solution, if the row has one 1

then a zero in that place and anything in the other place suffices for a solution,
and if the row is both zeros then anything is a solution.

 From the theorem, a non-zero nullity indicates that there are
other ways to satisfy the matrix equation. The nullity can thus be thought of as
a measure of the collection of ways in which R and B come together to make an
assignment to the crossings C1 and C2. A non-zero nullity indicates that there
are more ways of doing this than simply having no colours anywhere. This in
turn is a mark of incompleteness: an incomplete crossing can be completed in
more than one way, which indicates more than one solution for [R, B].

However, note too the exception, when Mp is trivial. This is complete and
inconsistent. However, [R, B] = [1, 1] is also a solution of the nullity equation,
since in Z2, 1 + 1 = 0. So the nullity of Mp is non-zero. However, its converse
(incompleteness implies non-zero nullity) holds irrespective of triviality.

5      .

The above suggestive result invites a related test for inconsistency and incom-
pleteness, namely to look at the structure of the null space of the primary and
secondary matrices. In an improvement over the previous sections, the condi-
tions obtained are general.
 4 A Necker is inconsistent iff the null space of its primary matrix satisfies
R = B.

Left to Right: If a Necker is inconsistent then we have either that at least
one row is [1, 1], or is the diagonal or the antidiagonal. If any row is [1, 1] then
the only way this can compute to zero is if R = B = 0 or R = B = 1. Either way,
R = B. For the diagonal matrix we have one row 1.R + 0.B = 0, which implies
R = 0. The other row is 0.R + 1.B = 0, which implies B = 0. Hence R = B. The
calculation for the antidiagonal matrix is the same. Right to Left: Any zero
entry in the primary matrix, and thus the row [0, 0], does not disturb the set of
solutions The row [0, 1] implies that B = 0 and R is any, so that R = 1 is possible,
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so that R 6= B is possible. The calculation for the row [1, 0] is the same. Hence
matrices with three zeros do not satisfy R = B. Matrices with three or four
ones are all inconsistent. This leaves six. Two of these, the diagonal and the
antidiagonal, are globally inconsistent. Two more, having a row of 1s and a row
of 0s, are locally inconsistent. The final two, where the two rows are identical,
force one colour to be 0 while the other colour can be any, so R 6= B is possible.

 The test asks which combinations of R and B make for each cross-
ing to be zero. The inconsistent Neckers are just those for which the primary
equation requires R = B = 0 or R = B = 1. This is perhaps not surprising in
that R = B = 0 is always a solution, and otherwise only 1.1 + 1.1 = 0 gives an
inconsistent row.
 5 A Necker is complete iff the null space of its secondary matrix satisfies
C1 = C2.

Proof: Left to Right: A Necker is complete iff no row of its primary matrix
is all zeros. Hence iff no column of its secondary matrix is all zeros. Such
matrices have at least two ones in them. Matrices with exactly two ones and
no column all zeros are (a) the diagonal, (b) the antidiagonal, or (c) one row
all ones and the other all zeros. Case (a) gives 1.C1 + 0.C2 = 0 which forces
C1 = 0; which combined with 0.C1 + 1.C2 = 0 also forces C2 = 0; whence
C1 = C2. Case (b) is the same. Case (c): the row of all ones forces C1 = C2 = 1

or 0. Otherwise, matrices with at least three ones in them force C1 = C2,
because as before the row 1.C1 + 1.C2 = 0 requires C1 = C2 = 0 or 1. Right to
Left: Conversely, if a Necker is incomplete, then there is some column of the
secondary matrix which is all zeros. Without loss of generality, we may assume
it is the left column. Columns of the secondary matrix correspond to crossings.
So the value of that crossing can be either 0 or 1 and the secondary equation is
still satisfied. If the other column is also all zeros then the matrix is all zeros
and all solutions are possible so that C1 6= C2 is possible. If the other column
has at least one 1 in it, then that column is forced to be 0, since 0.C1 +1.C2 = 0

implies C2 = 0. Hence C1 = 1 and C2 = 0 is a solution, and thus C1 6= C2 is
again possible.

 This is a little surprising, because one would think that it is the
nature of the primary equation that determines consistency/inconsistency and
completeness/incompleteness. Problem: how to turn this into a condition on
the null space of the primary matrix?
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6   
The results of the previous section suggest another test for inconsistency and
incompleteness, namely to look at the   of (the secondary ma-
trix of ) the Necker. This is defined as the equation Msx = 1˜, where x is a
column vector of variables and 1˜ is the unit column vector having all ones.

 6 A Necker is inconsistent iff its unit equation has solutions.

Proof: Left to Right: If a Necker is inconsistent then either (a) some row of
its primary matrix is all 1s, or the primary matrix is (b) the diagonal or (c) the
antidiagonal matrix. If (a) then some column of its secondary matrix is all 1s.
, let it be the first column, that for C1. Then C1 = 1 and C2 = 0 is a
solution, since the equations are of the form 1.C1+any.C2 = 1. The argument
is similar if it is the second column. If (b) then the equations are 1.C1+0.C2 = 1

and 0.C1 + 1.C2 = 1, which has C1 = C2 = 1 as a solution. Case (c) is similar.
Right to Left: If a Necker is consistent then no row of Mp is all 1s, so no
column of Ms is all 1s. Suppose that it has one 1 in it. If the other column is all
zeros, then we have a situation like 1.C1 +0.C2 = 1 and 0.C1 +0.C2 = 1, which
have no solutions. Similarly, if Ms is all zeros then the unit equation has no
solutions, since each row would have to satisfy 0 + 0 = 1. The final two cases
are where the Necker is consistent and complete, but in this case the equations
look like 1.C1 + 1.C2 = 1 and 0.C1 + 0.C2 = 1, which have no solutions.

 7 A Necker is complete iff the unit equation of its primary matrix has solu-
tions.

Proof: Left to Right: If a Necker is complete then no row of its primary matrix
is all zeros. Thus Mp has 2 or more ones. If it has 4 ones then it is easy to
see that either R = 0, B = 1 or R = 1, B = 0 are both solutions. If it has 3
ones then the row with the zero in it, eg. 1.R + 0.B = 1, forces R = 1, B = 0,
which in turn satisfies the second row 1.R + 1.B = 1. If it has two ones, then
there are three cases: (a) two consistent and complete, (b) the diagonal, and
(c) the antidiagonal. In case (a) we have eg. 1.R + 0.B = 1 and 1.R + 0.B = 1

which is satisfied by R = 1, B =any. In case (b) we have 1.R + 0.B = 1 and
0.R + 1.B = 1 which has the solution R = B = 1. Case (c), the antidiagonal, is
the same. Right to Left: If a Necker is incomplete than at least one row of Mp

is all zeros. This makes it impossible to satisfy the primary equation since for
that row 0.R + 0.B = 1, so there are no solutions.

7 
Theorem 6 in particular supplies the desired assimilation of local and global
inconsistency. The unit space of the secondary matrix is the test of incon-
sistency of whatever kind. This justifies the use of the secondary equation,
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defined as representing ways of face building. To be inconsistent, both faces
must have a value of 1 in the secondary equation, whereas to be consistent each
face must have a value zero, corresponding to a face being consistently behind
the other, or consistently in front. The contents of the unit space catalogue
the ways that inconsistent Neckers are generated. Additionally, the final The-
orem shows that the unit space of the primary matrix catalogues the ways that
a Necker may be complete.

It is pleasing that 2 × 2 matrices over the simplest case of a field, namely
Z2, are adequate to describe these cases. Indeed, the proofs in each case could
be replaced simply by inspection of cases, though the proofs given above carry
some theoretical illuminations. In a sequel, it is described what is preserved
and what is lost in moving to the more general case of n Neckers.


[2006] , , (2006) “An Analysis of Inconsistent and Incom-

plete Necker Cubes”, Australasian Journal of Logic, 4, 216–225.
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