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Abstract: There is general agreement in mathematics about what continuity is.
In this paper we examine how well the mathematical definition lines up with
common sense notions. We use a recent paper by Hud Hudson as a point of de-
parture. Hudson argues that two objects moving continuously can coincide for all
but the last moment of their histories and yet be separated in space at the end of
this last moment. It turns out that Hudson’s construction does not deliver math-
ematically continuous motion, but the natural question then is whether there is
any merit in the alternative definition of continuity that he implicitly invokes.

In his paper {2}, Hud Hudson presents an interesting argument to the con-
clusion that two temporally—continuous, spatially-unextended material objects
can travel together for all but the last moment of their existences and yet end
up one metre apart. What is surprising about this is that Hudson argues that
it can be achieved without either object changing in size or moving discontin-
uously. This would be quite a trick were it to work, but it is far from clear
that it does. The problem is that Hudson’s implicit notion of continuity is
not the standard one. On the standardly—accepted definition of continuity,
his example is straightforwardly a case of discontinuous motion. And there
is no surprise that Hudson’s trick can be achieved by invoking discontinuous
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motion. This, in turn, raises questions about the adequacy of the standard
mathematical definition of continuity. Can a case be made for a non-standard
definition of continuity and might this definition be used to support Hudson’s
example? We will turn to this question shortly, but first we need to see why
Hudson’s example relies on a non-standard definition of continuity:.

We won’t describe Hudson’s trick in detail because there is a much simpler
example that is essentially the same (which we’ll get to in a moment), but the
crux of Hudson’s case for the motion in question being continuous is that “nei-
ther character ever moves discontinuously, for no matter how small the open
region you take about the space-time point occupied by (the last part of one
object) you find a temporal slice of (that object) present in that region prior
to (that last time)” [2, p. 157]. Hudson’s example is more complicated than it
needs to be in several ways. For example, he uses extended objects in motion,
rather than points, but this plays no role in the construction. We can also
simplify things by talking about the function f such that f(t) gives the point’s
position at time t. What is crucial is that his justification of the continuity
of the motion suggests that he adopts the following account of continuity: a
function is continuous at a point c iff for every e > 0, and for every 6 > 0, there
exists an x # ¢ such that [x — ¢| < 8 and [f(x) — f(c)| < e[| Contrast this with the
now standard definition of continuity (introduced in the early 19th century by
Augustin-Louis Cauchy)—a real valued function f is said to be continuous at a
point c iff for every € > 0, there exists a & > 0 such that whenever [x — c| < 9,
f(x) —f(c)| < e. I3, p. 129

Perhaps the easiest way to see the difference between Hudson’s account
of continuity and the standard mathematical account is to consider a simpler
example of a construction similar to Hudson’s. Consider the function f(x) =
sin1/x for all x # 0 and f(x) = O for x = 0. This function is easily shown
to be discontinuous at x = 0P| But in so far as we understand what Hudson
has in mind by continuity, it would seem that he would admit this function as
“continuous”, since for any open disc around (0, 0) there will be some portion
of the graph of f(x) in that region. As we suggested, this function bears a close
resemblance to Hudson’s example. Indeed his example can be parametrised
with respect to time t < 0 and taking the centre of the clock in his example as

"In standard mathematical terminology, this means that c is a Zmit point of (the graph of) f.
13 971

*A more general definition is: for topological spaces X and Y a function f : X — Y is continu-
ous just in case every open set V C Y, (V) C X is open. 3} p. 102}

3For € < 1, there is no & > 0 that ensures that whenever x is within 6 of 0, f(x) is within €
of f(0) = 0, because sin 1/x reaches both 1 and —1 infinitely many times in any such interval, as
1/x goes off to infinity.
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the origin
‘ sm21 /t ®
cosl/t
y= ®

So the discontinuity of sin1/x at x = 0 suffices to show the discontinuity of
Hudson’s example, for the former’s behaviour is the same as the projection
onto the x axis of the latter[]

Indeed, there can be no construction that delivers what Hudson wants—at
least if we restrict ourselves to the standard mathematical sense of continu-
ity. Informally we can see the discontinuity of f in the example in the last
paragraph by noting that whenever x is close to 0, f(x) need not be close to
f(c) = 0. The formal proof is in footnote 3. A similar proof shows this for
any Hudson—style construction, where two continuous functions f and g coin-
cide everywhere except at a single point c, at least one of the functions must
be discontinuous at c. We note that by construction, f(c) # g(c). Now take
e = [f(c) — g(c)|/4. This is greater than zero yet either there will be no 5 > 0
that ensures that whenever x is within 6 of ¢, f(x) is within € of f(c), or there
will be no & > 0 that ensures that whenever x is within & of ¢, g(x) is within ¢
of g(c), because these two e—neighborhoods are disjoint. Thus, no version of
Hudson’s trick can succeed for the usual definition of continuity.

For purely mathematical purposes, the existing definition of continuity has
amply proven its worth in the development of the field of analysis. There are
motivations for developing other related concepts (like “uniform continuity”,
“differentiability”, and “smoothness”), but none of these (or any other alter-
native) will unseat the standard account of continuity. In the metaphysics of
motion, however, the situation is less clear—surely at least some actual physical
objects have continuous trajectories, and it is at least possible that some physi-
cal objects move discontinuously. Thus, if (as some interpretations of quantum
mechanics suggest) there is a lower bound on the size of meaningful spatial and
temporal separations, then the mathematical account of continuity would not
suffice for metaphysical purposes. If two distinct times can’t be separated by
less than 3, then this value of § would suffice to show that #// possible physical
trajectories are continuous. Unfortunately, Hudson’s account would fail to dis-
tinguish motions as well—this same & would show that on Hudson’s account
no physical trajectories are continuous. If the structure of physical space and
time are different, (for instance, if one of the alternate mathematical accounts
of the continuum described in {1} more accurately describes space and time,

+To make this case match Hudson’s more closely, replace 1/t by —mtlog, —t. This function
takes the value n7t when t is —2™™, so each rotation around the circle takes half the time of the
previous one.

5[51 also gives an example that is continuous at 0 on Hudson’s definition of continuity, but
clearly shouldn’t be counted.
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using infinitesimals or some other technique) then other problems might arise
for both Hudson’s account and the standard account.

Regardless of what the structure of space and time are like, there might be
other worries about the standard account of continuous motion. Perhaps there
is an argument that trajectories like those of Hudson’s objects should count as
continuous motion. But even so, this wouldn’t necessarily prompt a change to
the specific account of continuity proposed by Hudson.

As a minimal criterion of adequacy for an account of continuity of motion
in three—dimensional space (regardless of whether space and time are properly
represented by real numbers), consider the following:

If an object moves continuously from point (xA,ya,za) at time
ta to point (xc,yc,zc) at time tc, and xp is between x4 and xc,
then there is some time tg between ta and tc at which the x—
coordinate of the object’s position is xg. Similarly for the y— and
z—coordinates.

(If space can’t be represented by three coordinates, or if either spatial or tem-
poral coordinates don’t have an appropriate notion of betweenness, then this
criterion will have to be modified.) Without some criterion like this, an object
would be able to pass continuously from one side of an impenetrable barrier
occupying all points with x—coordinate equal to xg to the other, which seems
absurd.

The above criterion is none other than the Intermediate Value Theorem of
real analysis, and can be proven to be a consequence of the standard account
of continuity when space and time are real-valued. But this criterion does
not entail the standard account of continuity. For example, the motion of
Hudson’s two objects satisfies this condition even though it doesn’t satisfy the
standard definition of continuityE] Thus, it allows for a meaningful debate on
the appropriate metaphysical account of continuous motion. However, it still
rules out Hudson’s definition of continuity—as pointed out to us by Timothy
Bays, if an object is at point (0,0, 0) at every rational time, and (1,1, 1) at every
irrational time, then its trajectory satisfies Hudson’s account of continuity, but
clearly fails to meet this criterion, because it is never at any point with x—
coordinate equal to 1/2.

This criterion also imposes further conditions if the structure of space and
time is in some way “less dense” than that of the real line. If space and time are
both discrete, then it imposes a sort of “speed limit”—the fastest possible mo-
tion would move one spatial unit in each dimension in every unit of time. Ad-

®To see that this motion satisfies the criterion given here, note that if ta and tp are different
from 0, then the motion from one time to the other satisfies the standard definition of conti-
nuity, and thus the Intermediate Value Theorem entails that it satisfies this criterion. But if one
of these times (say ta) is 0, then we can find t) between ta and tg at which the object is at
the same point as it was at ta, and then again use the Intermediate Value Theorem to find tc
between t), and tg (and therefore between ta and tg) satisfying this criterion.
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ditionally, if space and time are both parametrized by rational/ numbers (which
are “less dense” than the reals), then an object that is at point (t* —2,0,0)
at any time t violates this criterion as well—it never reaches any point whose
x—coordinate is 0, even though it reaches both (—2,0,0) and (2,0, 0).

The preceding discussion suggests another way of approaching the ques-
tion of finding the right account of continuity. Rather than looking at different
mathematical definitions of continuity and seeing which best matches our in-
tuitions, we might start with physical theories and see what kinds of motions
the theories in question permit. We might think of these physically realistic
trajectories as continuous in some sense and then seek formal mathematical
descriptions of what these physically realistic motions have in common. To
give an interesting example, {4} describes a case where, even without collisions,
3—dimensional Newtonian mechanics allows solutions to the n-body problem
(for any n > 5) where a particle is ejected to infinity in a finite time. Moreover,
the function (of time) describing the particle’s location can be seen to be con-
tinuous at every point at which it is defined. The function has a singularity at
its “exit”[]

What is interesting about this case is that if we start with the standard
mathematical definition of continuity, we would say that the particle’s trajec-
tory is continuous everywhere it is defined; it’s just that it is not defined at the
“exit” singularity. But given that this is a physically realistic trajectory, under
the approach being considered here, we might well allow that the particle’s mo-
tion is continuous, period—even at the time at which it is infinitely far away.
This would be hard to reconcile with the standard definition of continuity.
The notion of continuity delivered by such an approach will be theory relative,
in that it will depend on what kinds of motions are possible in the theory in
question.

We have a couple of things to say about this approach. First, it is not at
all clear why we would want to identify “physically realistic” with continuous.
Surely it could be the case that some theories have it that some physically real-
istic motions are discontinuous—if physical theory allows for teleportation as
well as ordinary movement (as in much science fiction) then surely this means
that at least some discontinuous motion is physically realistic. The approach
under consideration would seem to rule that out by just stipulating that any
physically realistic motion will count as continuous. The second problem with
such an approach (of which the first problem is just a special case) is that it
does not allow intuitions about continuity to play any role. For scientific in-
quiry to play a role in revealing the meaning of a term, it seems that either this
term must be one that belongs entirely to scientific theory (like color in quan-
tum chromodynamics), or else there must be some pre—theoretic meaning of
the term that scientific inquiry can help clarify. “Continuous” seems to be of

7Thanks to an anonymous referee for pushing us to look at the issue in this way and for
drawing our attention to this example.
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the latter type, for which pre—theoretic intuitions are essential to a complete
understanding of the term. Perhaps it’s a more difficult case than many others,
because we don’t have any clear instances of actual discontinuous motion, but
this just suggests that empirical investigation of the actual may be even less
useful than it is in explaining the meanings of other terms, like “heat”.

In any case, examples like the one described by Saari and Xia will not
help rescue Hudson’s trick. So it seems that while one might reasonably ques-
tion the standard mathematical definition of continuity for motion in certain
space-time structures, none of the plausible alternative definitions seem to
push in the direction of the definition of continuity Hudson implicitly appeals
to. We therefore conclude that Hudson’s trick fails—at least as things currently
stand. But it is important to note that the trick does not fail merely because
he invokes a non—standard definition of continuity, but, rather, because there
does not seem to be a plausible case to be made for the definition he relies on.

We close with a brief suggestion of how something like Hudson’s advertised
trick can be achieved, without changing the account of continuous motion.
Two smootlﬂ functions can coincide over much of their domain but then part
ways in such a way as to differ in value by any amount you choose over as small
a non-zero interval you choose. The trick is done by using a patch function:
f(t) = 0 forallt < 0 and f(t) = e '/t for all t > 0. Such functions can
be used to “smooth over” a step function in an arbitrarily, but pre-specified,
small region. Of course this trick isn’t anywhere near as impressive as the one
Hudson advertised, but it is in its spirit. And, most importantly, this trick
works, and it works for the standard definition of continuity that we all know
and love )| Moreover, we suspect that this is the closest trick in the vicinity that
does something like what Hudson has in mind. You can part ways smoothly but
it takes some small, predetermined amount of time[|
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