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Abstract: We give a proof via reducibility of the Church-Rosser property for the
system D of λ-calculus with intersection types. As a consequence we can get the
confluence property for developments directly, without making use of the strong
normalization property for developments, by using only the typability in D and
a suitable embedding of developments in this system. As an application we get a
proof of the Church-Rosser theorem for the untyped λ-calculus.
Keywords: λ-calculus, Church-Rosser property, developments, intersection types,
reducibility.

1 
The Church-Rosser property (or confluence property) is a central property of
λ-calculus. It has known many different proofs since it was first proved by
A. Church and J.B. Rosser in 1936 [3]. Some of the classical proofs are con-
tained in [2]. The property was also proved for the simply typed λ-calculus
λ→ by G. Koletsos [10] and R. Statman [15] using the reducibility method and
logical relations, respectively.
∗This author is supported by “ΠYΘAΓOPAΣ” grant, co-funded by the European Social Fund
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In this paper we prove, using a reducibility argument, the Church-Rosser
property for the system D of λ-calculus with intersection types. The intersec-
tion types assignment systems were introduced by M. Coppo, M. Dezani-
Ciancaglini, and B. Venneri for characterizing via typability fundamental prop-
erties of the untyped λ-calculus such as solvability and strong normalization [4,
5, 6]. The system D is treated extensively by J.-L. Krivine in [13] where char-
acterizations of normalization properties are given via the reducibility method
by interpreting the types with suitable sets of λ-terms. A detailed study of this
method for proving general properties of λ-calculus can be found in [7, 8], [11],
and [9]. In our proof of the Church-Rosser property for system D we adapt
the reducibility method of [11] to this system.

As a consequence of the Church-Rosser property for system D we get
the confluence of a special kind of reduction called development. A devel-
opment is a restricted reduction in which we select some initial redexes and
keep reducing only them and their residuals throughout the reduction. In this
way all developments are finite and have unique normal form [2, Chapter 11].
This property of developments was originally used by A. Church to prove the
Church-Rosser property for the untyped λ-calculus. In [2] the confluence of
developments is proved by using the well-known Newman’s lemma, i.e. strong
normalization and the weak Church-Rosser property imply the Church-Rosser
property [14], so the strong normalization of developments is used as a prereq-
uisite. In our proof, the confluence of developments comes directly, without
using the strong normalization property, from the Church-Rosser property for sys-
tem D and by embedding the untyped λ-calculus into the system D. Note
though that strong normalization has equal strength as typability in D (see [13,
page 65] and [1, Theorem 7.4.11]).

As an application we can easily get a proof of the Church-Rosser theorem
for the full untyped λ-calculus.

In section 2 of the paper we introduce the basic notions and prove via
reducibility the Church-Rosser property for system D. In section 3 we define
precisely an operator that establishes the embedding of the untyped λ-calculus
into D and prove the confluence of developments. Finally, in section 4 we
use the previous result to prove the Church-Rosser theorem for the untyped
λ-calculus.

2  -    D
We start this section by presenting briefly some well-known definitions from
λ-calculus and system D. The notation, terminology and the syntactic conven-
tions are adopted mainly from [13].
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 
The types of D are the “propositional sentences” built inductively from the
variables X, Y, . . . (the type variables) and the connectives ∩ and →. We use
capital letters X, Y, . . . for the type variables and small letters x, y, . . . for the
individual variables by which we construct the λ-terms.

The untyped λ-terms are built inductively starting from the variables x, y, . . .
and using the following rule: if t and u are terms then (t)u (application) and
λx.t (λ-abstraction) are terms. For simplicity we write (u)t1t2 . . . tn or even
ut1t2 . . . tn for (. . . ((u)t1)t2 . . .)tn. The λx of a λ-abstraction term acts here as
a variable binder and so we must distinguish between the bound and free occur-
rences of a variable in a term. We denote by FV(u) the set of free variables in
the term u and we write u[t1/x1, . . . , tn/xn] for the “simultaneous” substitution
of the free occurrences of x1, . . . , xn in u by t1, . . . , tn, respectively. When nec-
essary we also adopt Barendregt’s variable convention so that all bound variables
are chosen to be different from the free variables.

A context Γ is a finite set of declarations x : A where x is an individual
variable, A is a type, and no x appears twice. x : A means “variable x has type
A”. We write Γ, x : A for the context Γ ∪ {x : A} where we always assume that x
does not appear in Γ .

We define inductively the notion “in context Γ , term t has type A” written
Γ D̀ t : A (or more simply Γ ` t : A) :

Rule 1. Γ, x : A ` x : A (hypothesis)

Rule 2. Γ, x : A ` t : B

Γ ` λx.t : A→ B
(→ -introduction)

Rule 3. Γ ` t : A Γ ` u : A→ B

Γ ` (u)t : B
(→ -elimination)

Rule 4. Γ ` t : A ∩ B
Γ ` t : A

(∩1-elimination)
Γ ` t : A ∩ B
Γ ` t : B

(∩2-elimination)

Rule 5. Γ ` t : A Γ ` t : B

Γ ` t : A ∩ B
(∩ -introduction)

Note that ∩ is a special conjunction which behaves rather as a set-theoretic
intersection.

We call Γ ` t : A a typing of t. If a term gets a typing by the above rules
then it is a typed or typable term. It is easy to check that FV(t) ⊆ {x1, . . . , xk}

whenever x1 : A1, . . . , xk : Ak ` t : A.
Let Λ denote the set of all (untyped) λ-terms. If X and Y are subsets of Λ,

we define X→ Y by:

u ∈ (X→ Y)
def
⇐⇒ ∀t ∈ X, (u)t ∈ Y
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The only reduction rule considered is β-reduction (notation ∗−→β ) defined
as the contextual, reflexive and transitive closure of the relation

(λx.u)v −→β u[v/x]

between a redex (λx.u)v and its contractum u[v/x]. We write t −→β t ′ when
t ′ is obtained from t by contracting one redex in t, and t ∗−→β t ′ when t ′ is
obtained by a finite sequence (possibly empty) of contractions from t.

We say that a term t has the Church-Rosser property (t has CR) wrt1 ∗−→β ,
if there exists a term t3 such that t1

∗−→β t3 and t2
∗−→β t3 whenever t ∗−→β t1

and t ∗−→β t2. The β-reduction relation (or any other reduction relation de-
fined on λ-terms) has the Church-Rosser property or is confluent if every term
has the Church-Rosser property wrt ∗−→β (wrt that relation, respectively).

We define next the formal machinery that will be needed in our work.
 1 A direct reduct of an application term uv1 . . . vn (n > 1) is a
term u ′v ′1 . . . v

′
n such that u ∗−→β u ′, v1

∗−→β v ′1, . . . , vn
∗−→β v ′n (therefore

uv1 . . . vn
∗−→β u ′v ′1 . . . v ′n).

We must note that a direct reduct of uv1 . . . vn is defined wrt a fixed num-
ber n of operands, i.e. wrt a specific presentation of uv1 . . . vn considered as a
term constructed from u by the n consecutive applications (u)v1, (uv1)v2, . . . ,
(uv1 . . . vn−1)vn. So any direct reduct of uv1 . . . vn invariantly has the same
form of presentation and a direct reduct of a direct reduct of uv1 . . . vn is al-
ways a direct reduct of uv1 . . . vn.
 2 If uv1 . . . vn

∗−→βw and w is not a direct reduct of uv1 . . . vn then there
exists a direct reduct u ′v ′1 . . . v ′n of uv1 . . . vn where u ′ = λx.u ′′ for some term u ′′,
and u ′′[v ′1/x]v ′2 . . . v ′n

∗−→βw, i.e.

uv1 . . . vn
∗−→β (λx.u ′′)v ′1 . . . v

′
n −→β u ′′[v ′1/x]v ′2 . . . v ′n

∗−→βw

Proof: Let w ′ be the first non direct reduct of uv1 . . . vn in the reduction
uv1 . . . vn

∗−→βw. Then

uv1 . . . vn
∗−→β u ′v ′1 . . . v ′n −→β w ′

∗−→βw

where u ′v ′1 . . . v ′n is a direct reduct of uv1 . . . vn. So w ′ cannot be a direct
reduct of u ′v ′1 . . . v ′n because any direct reduct of u ′v ′1 . . . v ′n is obviously a di-
rect reduct of uv1 . . . vn. The only way to get a non direct reduct of u ′v ′1 . . . v ′n
is by contracting a redex which is not inside in any of u ′, v ′1, . . . , v ′n and this is
possible only if u ′ is a λ-abstraction λx.u ′′ and the redex contracted is
(λx.u ′′)v ′1. Then w ′ = u ′′[v ′1/x]v

′
2 . . . v

′
n.

 3 If t ∗−→β t ′ and u ∗−→β u ′ then u[t/x]
∗−→β u ′[t ′/x].

Proof: The proof can be found in any textbook on λ-calculus, for example [2,
page 55].

1with respect to
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 4 We define CR to be the set of λ-terms that have the Church-
Rosser property, i.e. CR

def
== {t ∈ Λ : t has CR}, and CR0 the set of λ-terms of

the form xv1 . . . vn (n > 0) where x is a variable and v1, . . . , vn ∈ CR.
 5 X ⊆ Λ is said to be saturated when for all terms u, t, t1, . . . , tn
(n > 0) and for every variable x we have:

u[t/x]t1 . . . tn ∈ X ⇒ (λx.u)tt1 . . . tn ∈ X

 6 (1) If X,Y ⊆ Λ are saturated then X ∩ Y is saturated.
(2) If Y ⊆ Λ is saturated and X ⊆ Λ then X→ Y is saturated.

Proof: (1) If u[t/x]t1 . . . tn ∈ X ∩ Y then (λx.u)tt1 . . . tn ∈ X,Y.
(2) If u[t/x]t1 . . . tn ∈ X → Y then u[t/x]t1 . . . tnt0 ∈ Y for every t0 ∈ X, and
because Y is saturated (λx.u)tt1 . . . tnt0 ∈ Y. So (λx.u)tt1 . . . tn ∈ X→ Y.
 7 CR is saturated.

Proof: Suppose that u[t/x]t1t2 . . . tn ∈ CR. To prove that (λx.u)tt1 . . . tn ∈ CR

we suppose that (λx.u)tt1 . . . tn
∗−→β v and (λx.u)tt1 . . . tn

∗−→βw [Figure 1].

(λx.u)tt1 . . . tn
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Figure 1: Diagram of reductions for the proof of Proposition 7

Consider the left reduction (λx.u)tt1 . . . tn
∗−→β v. Then either v is a direct

reduct of (λx.u)tt1 . . . tn or it is not.
In the first case, there exist terms u ′, t ′, t ′1, . . . , t ′n such that

u
∗−→β u ′, t

∗−→β t ′, t1
∗−→β t ′1, . . . , tn

∗−→β t ′n,

George Koletsos and George Stavrinos, “Church-Rosser property and intersection types”, Australasian Journal of Logic (6) 2008, 37–54

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 42

and (λx.u)tt1 . . . tn
∗−→β (λx.u ′)t ′t ′1 . . . t

′
n = v. Then v −→β u ′[t ′/x]t ′1 . . . t

′
n

(by one contraction). Let v ′ = u ′[t ′/x]t ′1 . . . t
′
n. By Lemma 3,

u[t/x]t1t2 . . . tn
∗−→β v ′ and so v and u[t/x]t1t2 . . . tn both reduce to v ′.

In the second case, by Lemma 2 there exists a direct reduct (λx.u ′)t ′t ′1 . . . t
′
n

of (λx.u)tt1 . . . tn such that

u
∗−→β u ′, t

∗−→β t ′, t1
∗−→β t ′1, . . . , tn

∗−→β t ′n,

and

(λx.u)tt1 . . . tn
∗−→β (λx.u ′)t ′t ′1 . . . t

′
n −→β u ′[t ′/x]t ′1 . . . t ′n

∗−→β v

Let v ′ = v. By Lemma 3, u[t/x]t1t2 . . . tn
∗−→β u ′[t ′/x]t ′1 . . . t ′n and so

u[t/x]t1t2 . . . tn
∗−→β v ′.

In both cases there exists a term v ′ such that v ∗−→β v ′ (by one or zero con-
tractions) and

u[t/x]t1 . . . tn
∗−→β v ′ (1)

As the same argument holds also for the right reduction
(λx.u)tt1 . . . tn

∗−→βw, we can also obtain a term w ′ such that w ∗−→βw ′ (by
one or zero contractions) and

u[t/x]t1 . . . tn
∗−→βw ′ (2)

The result follows from (1), (2), and the assumption that u[t/x]t1t2 . . . tn has
CR.
 8 An interpretation I is a mapping from type variables X to satu-
rated subsets of Λ, denoted by [[X]]I. We inductively extend [[_ ]]I in to a map-
ping from types in the system D to subsets of Λ, in the following way:

(1) if A is a type variable then [[A]]I is already defined;

(2) if A = B ∩ C then [[A]]I
def
== [[B]]I ∩ [[C]]I;

(3) if A = B→ C then [[A]]I
def
== ([[B]]I → [[C]]I)

⋂
CR.

 9 We interpret the types of D by suitable sets of λ-terms that will
guarantee the desired Church-Rosser property, i.e. [[A]]I ⊆ CR [Lemma 14].
But in our variant of the reducibility method, we selected the interpretation of
B→ C to reside within CR in contrast to the usual reducibility interpretations
where B → C is interpreted by [[B]]I → [[C]]I. In the latter case we would
be stuck with the proof of CR → CR ⊆ CR as explained by the following
reasoning.

Suppose that t ∈ CR → CR and let t ∗−→β t1, t ∗−→β t2. Then for any
variable x not free in t, (t)x

∗−→β (t1)x, (t)x
∗−→β (t2)x and because x ∈ CR

we have that (t)x ∈ CR. So we can find a term u such that (t1)x
∗−→β u
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and (t2)x
∗−→β u. If u is a direct reduct of (t1)x, (t2)x then u = (t3)x and

t1
∗−→β t3, t2

∗−→β t3 therefore t ∈ CR, i.e. the confluence from t simulates
the confluence from (t)x to u. Otherwise, t1

∗−→β u1 and t2
∗−→β u2 where

λx.u
∗−→η u1 and λx.u ∗−→η u2 , so u1, u2 are η-equivalent2 and the confluence

from (t)x to u cannot be simulated by t [16].
 10 For every interpretation I and every typeA, [[A]]I is saturated.

Proof: By induction on the construction of type A. We consider only the case
A = B→ C.

By the IH3, [[C]]I is saturated. So [[B]]I → [[C]]I is saturated [Lemma 6]. By
Proposition 7, CR is saturated and therefore ([[B]]I → [[C]]I)

⋂
CR is saturated

[Lemma 6].
 11 (soundness, adequacy) Let I be an interpretation such that
CR0 ⊆ [[B]]I ⊆ CR for every type B. If x1 : A1, . . . , xk : Ak ` u : A is a typing of u,
then for all terms t1 ∈ [[A1]]I, . . . , tk ∈ [[Ak]]I we have u[t1/x1, . . . , tk/xk] ∈ [[A]]I.

Proof: We use induction on the typing in D of the term u. Consider the last
rule used:

(1) For Rule 1, u is one variable between x1, . . . , xk, say xi, andA = Ai. Then
u[t1/x1, . . . , tk/xk] = ti where ti ∈ [[Ai]]I by hypothesis.

(2) For Rule 2, u = λx.v, A = B→ C and we have:

x : B, x1 : A1, . . . , xk : Ak ` v : C

x1 : A1, . . . , xk : Ak ` λx.v : B→ C

Because x is a bound variable in u, by the variable convention we can
choose x such that x 6∈ FV(t1t2 . . . tk) ∪ {x1, . . . , xk}. We want to prove
that

(λx.v)[t1/x1, . . . , tk/xk] ∈ ([[B]]I → [[C]]I)
⋂

CR

By IH we have that (for all ti ∈ [[Ai]]I)

∀t ∈ [[B]]I , v[t/x, t1/x1, . . . , tk/xk] ∈ [[C]]I

(i) Because of the choice of x, the term v[t/x, t1/x1, . . . , tk/xk] is iden-
tical to the term (v[t1/x1, . . . , tk/xk]) [t/x] modulo renaming of
bound variables. Thus

(λx.v[t1/x1, . . . , tk/xk]) t ∈ [[C]]I

2The η-reduction relation (notation ∗−→η ) is defined as the contextual, reflexive and tran-
sitive closure of the the relation λx.(v)x −→η v where x /∈ FV(v). The equivalence relation
induced by ∗−→η is called η-equivalence.

3induction hypothesis
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because [[C]]I is saturated by Proposition 10. So

λx.v[t1/x1, . . . , tk/xk] ∈ [[B]]I → [[C]]I

By the choice of x,

λx.v[t1/x1, . . . , tk/xk] = (λx.v)[t1/x1, . . . , tk/xk]

so
(λx.v)[t1/x1, . . . , tk/xk] ∈ [[B]]I → [[C]]I

(ii) By hypothesis CR0 ⊆ [[B]]I, [[C]]I ⊆ CR and because x ∈ CR0 we
have that

v[x/x, t1/x1, . . . , tk/xk] ∈ CR

Thus
v[t1/x1, . . . , tk/xk] ∈ CR

Since abstraction on the outside of a term does not add redexes
λx.v[t1/x1, . . . , tk/xk] has CR and because of the choice of x,

λx.v[t1/x1, . . . , tk/xk] = (λx.v)[t1/x1, . . . , tk/xk]

so
(λx.v)[t1/x1, . . . , tk/xk] ∈ CR

(3) For Rule 3, u = wv and for some type B we have:

x1 : A1, . . . , xk : Ak ` v : B x1 : A1, . . . , xk : Ak ` w : B→ A

x1 : A1, . . . , xk : Ak ` wv : A

By IH, v[t1/x1, . . . , tk/xk] ∈ [[B]]I and

w[t1/x1, . . . , tk/xk] ∈ ([[B]]I → [[A]]I)
⋂

CR

so
(w[t1/x1, . . . , tk/xk]) v[t1/x1, . . . , tk/xk] ∈ [[A]]I

i.e. (wv)[t1/x1, . . . , tk/xk] ∈ [[A]]I.

(4) For Rule 4, we have for some type B:

x1 : A1, . . . , xk : Ak ` u : A ∩ B
x1 : A1, . . . , xk : Ak ` u : A

By IH, u[t1/x1, . . . , tk/xk] ∈ [[A]]I ∩ [[B]]I, so u[t1/x1, . . . , tk/xk] ∈ [[A]]I
and the same holds for ∩2-elimination.
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(5) For Rule 5, A = B ∩ C and we have:

x1 : A1, . . . , xk : Ak ` u : B x1 : A1, . . . , xk : Ak ` u : C

x1 : A1, . . . , xk : Ak ` u : B ∩ C

By IH, u[t1/x1, . . . , tk/xk] ∈ [[B]]I and u[t1/x1, . . . , tk/xk] ∈ [[C]]I , so
u[t1/x1, . . . , tk/xk] ∈ [[B ∩ C]]I.

 12 CR0 ⊆ CR

Proof: Suppose that xv1 . . . vn
∗−→β u and xv1 . . . vn

∗−→βw where v1, . . . , vn
have CR. Then u and w must necessarily be direct reducts of xv1 . . . vn
[Lemma 2] of the form u = xv ′1 . . . v

′
n,w = xv ′′1 . . . v

′′
n and vi

∗−→β v ′i, vi
∗−→β v ′′i

for all i ∈ {1, . . . , n}. But then there exist terms v ′′′i (1 6 i 6 n) such that
v ′i
∗−→β v ′′′i and v ′′i

∗−→β v ′′′i . By using the properties of β-reduction we can
conclude that u ∗−→β xv ′′′1 . . . v ′′′n and w ∗−→β xv ′′′1 . . . v ′′′n .
 13 CR0 ⊆ (CR→ CR0)

Proof: Suppose that xv1 . . . vn ∈ CR0 and v ∈ CR. Then by definition of CR0,
vi ∈ CR (1 6 i 6 n) and therefore xv1 . . . vnv ∈ CR0.
 14 If I is an interpretation such that CR0 ⊆ [[X]]I ⊆ CR for every type vari-
able X, then CR0 ⊆ [[A]]I ⊆ CR for every typeA.

Proof: We use induction on the construction of type A.

(1) If A is a type variable X then the result follows from the assumption.

(2) If A = B ∩ C then by IH, CR0 ⊆ [[B]]I ⊆ CR and CR0 ⊆ [[C]]I ⊆ CR. So
CR0 ⊆ ([[B]]I ∩ [[C]]I) ⊆ CR.

(3) If A = B → C then evidently ([[B]]I → [[C]]I)
⋂

CR ⊆ CR. By IH, CR0 ⊆
[[C]]I , [[B]]I ⊆ CR, so (CR → CR0) ⊆ ([[B]]I → [[C]]I) and by Lemma 13,
CR0 ⊆ ([[B]]I → [[C]]I). By Lemma 12, CR0 ⊆ ([[B]]I → [[C]]I)

⋂
CR.

 15 (church-rosser for typed terms) If t is typed in the system D then t
has CR.

Proof: Suppose that x1 : A1, . . . , xk : Ak ` t : A is a typing of t. Let I be
an interpretation such that [[X]]I = CR for every type variable X. Then by
Lemma 14, CR0 ⊆ [[Ai]]I for all i ∈ {1, . . . , k} and because all xi’s belong to CR0
we have xi ∈ [[Ai]]I for all i’s. By the soundness theorem t[x1/x1, . . . , xk/xk] ∈
[[A]]I , i.e. t ∈ [[A]]I and again by Lemma 14, t ∈ CR.
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3   
We have proved that every term t typed in the system D has the Church-Rosser
property. Therefore the β-reduction relation for typed terms is confluent.

We proceed to prove the confluence of a “restricted” kind of reduction
on the untyped terms by defining an embedding of the untyped terms into the
typed terms. This “restricted” reduction defines the notion of a development
[2, 13]. In our proof we are motivated by the proof of the theorem of finite de-
velopments as presented in [13, pages 45–49]. The rest of this section up to
Lemma 33 makes explicit the machinery used there.

First we need to define an operator Ψ(_ , _ ) such that for any pair (t,F) with
t ∈ Λ and F a set of occurrences of redexes in t, Ψ(t,F) will be produced from
the term t where all the redexes (λx.u)v in t not belonging to F are “frozen”
by replacing them with ((c)λx.u)v, where c is a new distinguished variable for
λ-terms that is never substituted. By doing this we leave as redexes in t only
the ones in F. In addition, we will block the possibility of creating new redexes
from β-reductions in t out of the contraction of the redexes in F. For example,
if t contains a subterm (y)v, then after β-reducing a redex in t, some subterm
of the form λx.u may substitute y and create a new redex. In order to avoid
this situation we will also put in front of every subterm of the form (w)v, with
w not a λ-abstraction, the distinguished variable c, i.e. we replace (w)v with
((c)w)v. Thus we also “freeze” the applications in t so that they cannot be
transformed into redexes.
 16 In what follows, F is a set of occurrences of redexes in t, i.e. of re-
dexes accompanied with a pointer showing their location in term t. For exam-
ple, the same redex (λx.x)x occurs in two different locations in
t = ((λx.x)x)(λx.x)x and thus may appear twice in F but with a different
pointer in each case.

However, for brevity reasons, we will refer to F as a set of redexes in t and
will not specify the accompanying pointer of the redexes.
 17 Let t ∈ Λ and F a set of redexes in t. We define formally the
operator Ψ(_ , _ ) by induction on t:

(1) if t is a variable x then F = ∅ and

Ψ(x, ∅)
def
== x

(2) if t is a λ-abstraction λx.u then F is a set of redexes in u and

Ψ(λx.u,F)
def
== λx.Ψ(u,F)

(3) if t is an application uv and F1 (resp. F2) is the set of redexes of u (resp.
v) in F then F \ {t} = F1 ∪ F2 and

Ψ(uv,F)
def
==

{
(c)Ψ(u,F1)Ψ(v,F2) if t 6∈ F

Ψ(u,F1)Ψ(v,F2) otherwise
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We call Ψ(t,F) the freezing of (t,F).
 18

1. If t = (λx.x)(λx.x)y and F = {(λx.x)y}, then Ψ(t,F) = ((c)λx.x)(λx.x)y.

2. If t = (λx.(x)x)λx.(x)x and F = {(λx.(x)x)λx.(x)x}, then
Ψ(t,F) = (λx.(c)xx)λx.(c)xx.

Let c be the new variable introduced above.
 19 We define inductively a subset of the λ-terms with c, denoted
Λc, in the following way:

(1) if x is a variable distinct from c, then x ∈ Λc (variable)

(2) if x is a variable distinct from c and T ∈ Λc, then λx.T ∈ Λc
(λ-abstraction)

(3) if T,U ∈ Λc, then (c) TU ∈ Λc (non-redex application)

(4) if T,U ∈ Λc and T is a λ-abstraction, then TU ∈ Λc (redex application)

Note that there are terms of Λ not in Λc, for example c, (λx.x)yz,
((c)λx.x)yz 6∈ Λc but ((c)(λx.x)y)z, ((c)((c)λx.x)y)z ∈ Λc.
 20 (1) If T,U ∈ Λc and x 6= c, then T [U/x] ∈ Λc. (2) Λc is closed under
β-reduction, i.e. if T ∈ Λc and T ∗−→β T ′ then T ′ ∈ Λc.

Proof: (1) By induction on T . (2) By induction on T using (1).
 21 Every term ofΛc is typed in the system D.

Proof: We can actually prove that for every term T ∈ Λc and every context Γ for
all the free variables of T , except c, there exist types C,A such that Γ, c : C D̀

T : A. The proof can be found in [13, pages 46–47]. The use of intersection
types is crucial in this proof but we will see later [Proposition 36] that with a
slight modification of Λc the proof can also be adapted for the simply typed
λ-calculus.
 22 The range of the freezing operator Ψ(_ , _ ) is a subset ofΛc.

Proof: We prove by an easy induction on t that if t ∈ Λ and F is a set of redexes
in t, then Ψ(t,F) ∈ Λc.
 23 We define a surjective mapping from Λc onto Λ called erasure
and denoted |_ |, by induction on T ∈ Λc :

(1) if T is a variable distinct from c, then |T |
def
== T ;

(2) if T = λx.U and U ∈ Λc, then |T |
def
== λx.|U|;
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(3) if T = (c)UV and U,V ∈ Λc, then |T |
def
== (|U|)|V |;

(4) if T = (λx.U)V and U,V ∈ Λc, then |T |
def
== (λx.|U|) |V |.

Thus |T | is obtained by leaving out the variable c in T . It is noticeable that
erasure does not preserve types.

We will now show, in the following four lemmas, that Ψ(_ , _ ) defines a
one-to-one correspondence between the pairs (t,F) and the terms of Λc, i.e.
an embedding of the untyped terms into the typed terms.
 24 If t ∈ Λ and F is a set of redexes in t, then |Ψ(t,F)| = t.

Proof: By an easy induction on t ∈ Λ using Lemma 22.
 25 If t ∈ Λ and F is a set of redexes in t, then F = {|R| : R is a redex inΨ(t,F)}.

Proof: By induction on t ∈ Λ using Lemma 24.
 26 If T ∈ Λc, t = |T | and F = {|R| : R redex in T } then F is a set (possibly
empty) of redexes in t and Ψ(t,F) = T , i.e. Ψ(_ , _ ) is surjective.

Proof: By induction on T ∈ Λc.
 27 For every T ∈ Λc there exists one and only one pair (t,F) with t ∈ Λ and
F a set of redexes in t, such thatΨ(t,F) = T . ThereforeΨ(_ , _ ) is a one-to-one mapping
ontoΛc.

Proof: Due to the previous lemma it suffices to prove the “only one” part. This
is easily proved using Lemma 24 and Lemma 25.
 28 Let t ∈ Λ, F a set of redexes in t and t −→β t1 by contraction
of a redex r in t. If T = Ψ(t,F∪{r}), R the redex in T with |R| = r [Lemma 25] and
T1 the term obtained by contraction of R in T , then by Lemma 27 there exists
F1 such that Ψ(t1,F1) = T1 (in fact t1 = |T1| and F1 = {|R| : R redex in T1}). We
call F1 the set of residuals of F in t1 relative to r.
 29 Let t = (λx.(x)x)λx.(x)x −→β (λx.(x)x)λx.(x)x = t1 and F =

{(λx.(x)x)λx.(x)x}. Then

T = Ψ(t,F) = (λx.(c)xx)λx.(c)xx

T1 = ((c)λx.(c)xx)λx.(c)xx

F1 = ∅

So the set of residuals of F in t1 relative to redex (λx.(x)x)λx.(x)x is ∅.
 30 Let t = (λx.(x)x)(λx.x)x −→β ((λx.x)x)(λx.x)x = t1 and F =

{(λx.x)x}. Then

T = Ψ(t,F ∪ {(λx.(x)x)(λx.x)x}) = (λx.(c)xx)(λx.x)x

T1 = ((c)(λx.x)x)(λx.x)x

F1 = {(λx.x)x, (λx.x)x}
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So the set of residuals of F in t1 relative to redex (λx.(x)x)(λx.x)x is {(λx.x)x,

(λx.x)x}, i.e. two distinct occurrences of the same redex (λx.x)x.
 31 Let t ∈ Λ, F a set of redexes in t and the β-reduction

t −→β t1 −→β . . . tn−1 −→β tn

obtained by contracting consecutively the redexes r in t, r1 in t1, . . . , rn−1 in
tn−1. We define, by induction on n, the set Fn of residuals of F in tn relative to
(r, r1, . . . , rn−1) : if n = 1 then F1 is defined above; if n > 2 then Fn is the set
of residuals of Fn−1 in tn relative to rn−1 where Fn−1 is the set of residuals of
F in tn−1 relative to (r, r1, . . . , rn−2).

Intuitively, given a β-reduction of a term t we select a set F of redexes in
the term, we “mark” those redexes (in Λc we “freeze” all the other redexes by
blocking them with the variable c) and we follow their evolution throughout
the reduction.
 32 Let t ∈ Λ and F a set of redexes in t. A development of (t,F)

is a β-reduction t −→β t1 −→β . . . tn−1 −→β tn (n > 0) obtained by
contracting consecutively the redexes r, r1, . . . , rn−1 where r ∈ F and ri is
a residual of F in ti relative to (r, r1, . . . , ri−1), for all i. If Fn is the set of
residuals of F in tn relative to (r, r1, . . . , rn−1) then we denote the development
by (t,F)

∗−→d (tn,Fn) or t F−→d tn. As in the case of β-reduction we write
(t,F) −→d (t1,F1) for the one-step development where t −→β t1.

In a development of (t,F) we always contract redexes that are residuals of
the initial set F of redexes. This is achieved within Λc by “freezing” the appli-
cations in t, blocking them with the variable c, so that they will not become
redexes themselves.
 33 Let t ∈ Λ and F a set of redexes in t. There exists a one-to-one correspon-
dence between the developments of (t,F) and the β-reductions of Ψ(t,F).

Proof: It suffices to show that

(t,F) −→d (t ′,F ′)⇔ Ψ(t,F) −→β Ψ(t ′,F ′)

But this is immediate from Lemma 27 and the way of defining residuals.

 34 (confluence of developments) If t
F1−→d t1 and t

F2−→d t2
then there exist sets F1, resp. F2, of redexes in t1, resp. t2, and a term t3 ∈ Λ such
that t1

F1−→d t3 and t2
F2−→d t3.

Proof: The proof is sketched in Figure 2. Let t F1−→d t1 and t F2−→d t2. Then
there exist F11,F

2
2 such that (t,F1)

∗−→d (t1,F
1
1) and (t,F2)

∗−→d (t2,F
2
2). By

extending the initial sets of redexes F1,F2 to F1∪F2 and contracting the same
redexes, we get the developments (t,F1 ∪ F2)

∗−→d (t1,F
1
1 ∪ F12) and (t,F1 ∪

F2)
∗−→d (t2,F

2
1 ∪ F22) for some F12 (resp. F21) which are the residuals of F2
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(t,F1) -∗
d

(t1,F
1
1)

t -F1

d
t1 (t,F1 ∪ F2) -∗

d
(t1,F

1
1 ∪ F12)

(t,F2)

?
F2

d ⇒
?
∗

d

⇒ ?
∗

d ⇒
t2

(t2,F
2
2)

(t2,F
2
1 ∪ F22)

T -∗
β
T1 T1 (t1,F

1) t1

?
∗

β
⇒

?
∗

β
⇒

?
∗

d
⇒

?
F1

d

T2 T2 -∗
β
T3 (t2,F

2) -∗
d

(t3,F
3) t2 -F2

d
t3

Figure 2: Sketching the proof of Theorem 34

(resp. F1) for the corresponding reductions from t.4 Let F1 = F11 ∪ F12 and
F2 = F21 ∪ F22. By Lemma 33 there exist T, T1, T2 ∈ Λc such that

T = Ψ(t,F1 ∪ F2), T1 = Ψ(t1,F
1), T2 = Ψ(t2,F

2)

and T ∗−→β T1, T
∗−→β T2. But T is typed in the system D [Lemma 21] there-

fore T has CR [Theorem 15]. So there exist T3 ∈ Λc such that T1
∗−→β T3,

T2
∗−→β T3. By Lemma 33 there exist t3,F3 such that T3 = Ψ(t3,F

3) and

(t1,F
1)
∗−→d (t3,F

3), (t2,F
2)
∗−→d (t3,F

3)

i.e. t1
F1−→d t3 and t2

F2−→d t3.

3.1 :     
In the above proof we made use of the fact that typability in D implies the
Church-Rosser property [Theorem 15] and for this reason we employed the
“freezing” mechanism of Λc to simulate the process of a development. We can
however prove Theorem 34 without introducing system D [12]. All we need is the
simply typed λ-calculus λ→ for which the analogous Church-Rosser theorem, i.e.
typability in λ→ implies the Church-Rosser property, can be found in [10, 15].

The simply typed λ-calculus can be defined as a restriction of system D by
ommitting the intersection types and the corresponding rules (∩1-elimination),
(∩2-elimination), and (∩-introduction). The typing relation will be denoted by
λ̀→ .

The “freezing” mechanism ofΛc must now be adapted to the new situation.
We consider a denumerable set C = {c0, c1, . . .} of new distinguished variables.

4The residuals of a set of redexes are determined by the residuals of the individual redexes.
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 35 We define inductively a subset of the λ-terms with the vari-
ables c0, c1, . . ., denoted Λc, as before:

(1) if x is a variable distinct from c0, c1, . . ., then x ∈ Λc (variable)

(2) if x is a variable distinct from c0, c1, . . . and T ∈ Λc, then λx.T ∈ Λc
(λ-abstraction)

(3) if T,U ∈ Λc, then (ci) TU ∈ Λc for any i (non-redex application)

(4) if T,U ∈ Λc and T is a λ-abstraction, then TU ∈ Λc (redex application)

Any term of Λc can be transformed to a term of Λc by just replacing the
variables c0, c1, . . . with c. We can easily prove as before that the set Λc is
closed under β-reduction and that every term of Λc is typed in the system D.
 36 Let T ∈ Λc be a term where each of the variables c0, c1, . . . has at
most one occurrence, and Γ be any context for the free variables of T , except c0, c1, . . ..
Then there exist typesA,C0, C1, . . . , Cn of the simply-typed λ-calculus such that Γ, c0 :

C0, . . . , cn : Cn λ̀→ T : A.

Proof: We use induction on T . We sketch the proof for the last two cases (3)
and (4).

(3) Let T = c0UV . From hypothesis we can suppose that FV(U) ∩ C =

{c1, . . . , ck} and FV(V) ∩ C = {ck+1, . . . , cn}. By IH, there exist types B,D,
C1, . . . , Ck, Ck+1, . . . Cn such that

Γ, c1 : C1, . . . , ck : Ck λ̀→ U : B

and
Γ, ck+1 : Ck+1, . . . , cn : Cn λ̀→ V : D

Then we can deduce that

Γ, c1 : C1, . . . , ck : Ck, ck+1 : Ck+1, . . . , cn : Cn, c0 : B→D→A λ̀→ c0UV : A

(4) Let T = (λx.V)U. From hypothesis we can suppose that FV(U) ∩
C = {c0, . . . , ck} and FV(V) ∩ C = {ck+1, . . . , cn}. By IH, there exist types
B,C0, . . . , Ck such that

Γ, c0 : C0, . . . , ck : Ck λ̀→ U : B

By IH again, for the context Γ, x : B there exist typesA,Ck+1, . . . , Cn such that

Γ, x : B, ck+1 : Ck+1, . . . , cn : Cn λ̀→ V : A

Then we can easily deduce

Γ, c0 : C0, . . . , ck : Ck, ck+1 : Ck+1, . . . , cn : Cn λ̀→ (λx.V)U : A

George Koletsos and George Stavrinos, “Church-Rosser property and intersection types”, Australasian Journal of Logic (6) 2008, 37–54

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 52

The cases (1) and (2) are immediate.
So the terms of Λc with at most one occurrence of c0, c1, . . . are typable

in the simply-typed λ-calculus and as we stated above they have the Church-
Rosser property. Consider now the terms T, T1, T2 in the proof of Theorem 34.
If we replace each occurrence of the variable c in T by a new variable in C we
get a term T ′ ∈ Λc with at most one occurrence of c0, c1, . . . and with the same
redexes as T . By simulating the reductions T ∗−→β T1 and T ∗−→β T2 we get inΛc
the reductions T ′ ∗−→β T ′1 and T ′ ∗−→β T ′2 where T ′1, T ′2 have the same redexes as
T1, T2, respectively. Because T ′ has CR, there exists a term T ′3 ∈ Λc such that
T ′1

∗−→β T ′3 and T ′2
∗−→β T ′3. It remains to replace the variables c0, c1, . . . by c

and recover the term T3 ∈ Λc and the reductions T1
∗−→β T3, T2

∗−→β T3. Then
we can proceed with the rest of the proof of Theorem 34.

4 :  - 
 37 We define a reduction relation on Λ called one-reduction (nota-
tion ∗−→1 ) by: t ∗−→1 t ′

def
⇐⇒ ∃F,F ′ such that (t,F)

∗−→d (t ′,F ′).5

 38 ∗−→β is the transitive closure of ∗−→1 .

Proof: Let t ∗−→β t ′. We use induction on the length n of the reduction. If
n = 0, i.e. t ′ = t, then for some F, (t,F)

∗−→d (t,F) trivially. If n > 1 then
t
∗−→β t ′′ −→β t ′ for some t ′′ ∈ Λ. By IH there exist terms t1, t2, . . . , tk ∈ Λ

such that
t
∗−→1 t1

∗−→1 t2 . . .
∗−→1 tk

∗−→1 t ′′

If r is the reduced redex in t ′′ −→β t ′ then (t ′′, {r}) −→d (t ′, ∅), so t ′′ ∗−→1 t ′,
i.e. finally

t
∗−→1 t1

∗−→1 t2 . . .
∗−→1 tk

∗−→1 t ′′
∗−→1 t ′

 39 (church-rosser) If t ∈ Λ then t has CR.

Proof: We have to show that if t ∗−→β t1 and t ∗−→β t2 then there exists t3 ∈ Λ
such that t1

∗−→β t3 and t2
∗−→β t3. This is immediate from Lemma 38 and

Theorem 34 by a simple diagram chasing of Figure 3.


The authors would like to thank the two anonymous referees for their very
helpful comments.

5This relation is almost the same as the one defined in [2, Definition 11.2.27] with the dif-
ference that there F ′ = ∅. The reason is that when F ′ = ∅ all residuals are “consumed” and the
development ends with a unique term [2, Theorem 11.2.25].
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Figure 3: Diagram of reductions for the proof of Theorem 39
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