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Abstract: In applying Bayes’s theorem to the history of science, Bayesians some-
times assume – often without argument – that they can safely ignore very im-
plausible theories. This assumption is false, both in that it can seriously distort
the history of science as well as the mathematics and the applicability of Bayes’s
theorem. There are intuitively very plausible counter-examples. In fact, one can
ignore very implausible or unknown theories only if at least one of two conditions
is satisfied: (i) one is certain that there are no unknown theories which explain
the phenomenon in question, or (ii) the likelihood of at least one of the known
theories used in the calculation of the posterior is reasonably large. Often in
the history of science, a very surprising phenomenon is observed, and neither of
these criteria is satisfied.

1 
Bayes’s Theorem comes in various flavors (see [7] for a nice survey). Presently,
we will make use of the following (standard) version of Bayes’s Theorem:

 1 (bayes’s theorem)

Pr(T | E) =
Pr(E | T) · Pr(T)

Pr(E | T) · Pr(T) + Pr(E | ∼T) · Pr(∼T)
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In words, this version of Bayes’s Theorem says that the conditional proba-
bility of a theory T , given an evidential proposition E (which we’ll just call the
posterior of T , for short) is a function of four quantities: (i) the likelihood of T :
Pr(E | T), (ii) the likelihood of the denial of T : Pr(E | ∼T), the unconditional
probability of T (which we’ll just call the prior of T , for short): Pr(T), and the
prior of ∼T : Pr(∼T). This paper can be read as a cautionary tale about the perils
of trying to approximate the posterior of T , using Bayes’s Theorem, together
with approximations of some of the quantities (i)–(iv). Specifically, we will focus
on the use of Bayes’s Theorem, together with approximations of the quantities
[(ii) and (iv)] involving the denial of T : Pr(∼T), Pr(E | ∼T). Such approximations
are often used in Bayesian philosophy (and history) of science.

It is well-known that Bayesians have a problem dealing with the likelihoods
of unknown (unthought of ) theories (see, for instance [3, Ch. 7]). If you have
no idea of what a theory is, how can you say anything about the probability of a
phenomenon (E) given that unknown theory? Bayesians sometimes get around
this concern by assuming that sum of the prior probabilities of the known theo-
ries is (very) high, thus making the prior probabilities of any unknown theories
(very) low. In applying Bayes’s theorem to the history of science, Bayesians of
this ilk sometimes tacitly rely — often without argument — on the following
problematic assumption:

H-I-T -I (HITI) A1:

Given the prior probabilities and likelihoods of all known theories with respect
to evidence E, and given that the sum of the prior probabilities of the known
theories is close to 1, the posterior Pr(T |E) for any theory T can be approximated
to a high degree of accuracy. I.e., for all practical purposes, under those condi-
tions one can ignore very improbable (off the wall) alternatives to T , whether
they be known or unknown.

While many mathematical examples do satisfy the HITI, other mathemat-
ical examples (and, more interestingly, much of the history of science) do not. The
falsity of HITI adds additional complications for applying Bayes’s theorem to
the history of science and elsewhere.

2       
Although the HITI Assumption is false (as we will demonstrate shortly), there
is a related truth of some intrinsic interest that we will examine first. The
related truth is the following:

1For some examples, of varying degrees of explicitness, see [1, p. 182], [2], [6, p. 137], [3, p. 84],
and [10, passim]. Many of the confirmation-theoretic examples we know of come from discus-
sions of Bayesian solutions to the Quine/Duhem Problem, but the issue obviously also arises
elsewhere in Bayesian confirmation theory. Moreover, similar problems concerning “ignoring
implausible alternatives” also arise in the more general context of Bayesian decision theory. See
[8] for discussion.
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If one can accurately approximate the prior probability of the denial ∼T

of T (i.e., the disjunction of all the alternatives to T ), then one can also
accurately approximate the likelihood of ∼T (relative to E), using one’s
approximation of the prior probability of ∼T .

Let Pr∗(∼T) be an approximation of Pr(∼T) calculated by adding the prior prob-
abilities of the most probable theories inconsistent with T . And, let Pr∗(E | ∼T)

be an approximation of the likelihood of ∼T [i.e., the disjunction of all alter-
natives to T ] relative to evidence E, obtained using Pr∗(∼T) in place of Pr(∼T).
We will now show that, for any small difference δ we chose,

If |Pr(∼T) − Pr∗(∼T)| < δ · Pr(∼T), then |Pr(E | ∼T) − Pr∗(E | ∼T)| < δ.

Here is the proof. Assume there is a finite number of mutually exclusive theo-
ries T , T1, T2, . . . , Tj, . . . , Tn, where T1, T2, . . . , Tn are all the alternative theories
to T .2 The sum of the prior probabilities of the alternatives is the probability
that T is false:

Pr(T1) + Pr(T2) + · · ·+ Pr(Tj) + · · ·+ Pr(Tn) = Pr(∼T)

For each theory, assume that we know its prior probability and its likelihood
(relative to E). We can calculate Pr(∼T) in two different ways, because

Pr(∼T) = Pr(T1) + Pr(T2) + · · ·+ Pr(Tn)

and
Pr(∼T) = 1− Pr(T)

We also know the likelihood of ∼T (relative to E), since

Pr(E | ∼T) =
Pr(E | T1) · Pr(T1) + Pr(E | T2) · Pr(T2) + · · ·+ Pr(E | Tn) · Pr(Tn)

Pr(∼T)

Now, since we know Pr(T), Pr(E | T), Pr(∼T) and Pr(E | ∼T), we have enough
information to use Bayes’s theorem to calculate Pr(T | E). Next, let us ap-
proximate Pr(∼T) as closely as we desire, as Pr∗(∼T). First, we order all the
alternative theories to T in monotonic decreasing prior probability: Pr(T1) >
Pr(T2) > · · · > Pr(Tn). We want Pr∗(∼T) to be within δ · Pr(∼T) of Pr(∼T);
that is, |Pr(∼T) − Pr∗(∼T)| < δ · Pr(∼T). Since we know Pr(∼T) precisely, we can
get the desired approximation by adding Pr(T1) + Pr(T2) + · · · until we reach a
theory Tk such that:

Pr(∼T) − (Pr(T1) + Pr(T2) + · · ·+ Pr(Tk)) < δ · Pr(∼T).
2We assume here that all alternatives to T are incompatible with T , and that there are only

finitely many alternatives to T . These are standard Bayesian modeling assumptions. The result
here could be generalized to various other sorts of cases, but this would unnecessarily complicate
the present discussion.
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Depending on the facts of the case and the desired degree of approximation,
Tk may or may not be the same theory as Tn. First, note the triviality that given
any theory, the probability of any data can never be greater than 1. That is, for
any theory Ti, Pr(E, |Ti) 6 1. Therefore for any theory Ti,

Pr(Ti) · Pr(E | Ti) 6 Pr(Ti)

and so

Pr(E | Tk+1)Pr(Tk+1) 6 Pr(Tk+1)

Pr(E | Tk+2)Pr(Tk+2) 6 Pr(Tk+2)

...
Pr(E | Tn) · Pr(Tn) 6 Pr(Tn)

Therefore:

Pr(E | Tk+1) · Pr(Tk+1) + · · ·+ Pr(E | Tn) · Pr(Tn) 6 Pr(Tk+1) + · · ·+ Pr(Tn)

Since we have ordered our theories such that

Pr(Tk+1) + · · ·+ Pr(Tn) < δ · Pr(∼T),

it follows that

Pr(E | Tk+1) · Pr(Tk+1) + · · ·+ Pr(E | Tn) · Pr(Tn) < δ · Pr(∼T).

And, since

|Pr(E | ∼T) − Pr∗(E | ∼T)| =
Pr(E | Tk+1) · Pr(Tk+1) + · · ·+ Pr(E | Tn) · Pr(Tn)

Pr(∼T) ,

it follows that

|Pr(E | ∼T) − Pr∗(E | ∼T)| < δ.

Therefore, provided that we can approximate Pr(∼T) to any degree of ac-
curacy we want [by Pr∗(∼T)], we can also approximate Pr(E | ∼T) to any degree
of accuracy we want [using Pr∗(∼T)].3 Now we are in the happy position of
knowing Pr(T), Pr(E | T) and Pr(∼T), and we are able to approximate Pr(E | ∼T)

as accurately as want. But all is not beer and skittles. Although these four
values are all the independent variables required for using Bayes’s Theorem to
calculate Pr(T | E), that is no guarantee that Pr∗(T, |E) will be anywhere near
Pr(T | E). First, let us examine two counter-examples to HITI and then turn
to the general conditions under which highly implausible theories cannot be
ignored.

3As a result, Bayesian confirmation theorists who measure degree of confirmation using the
likelihood difference measure: Pr(E | T) − Pr(E | ∼T) (e.g., [9, p. 252]) can safely ignore very im-
plausible alternatives (in general). However, the likelihood difference is an inadequate measure
of confirmation in salient contexts (see, e.g., [4, fn. 26]).
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3  -    
3.1    
You have a very large urn in front of you. For reasons we need not go into,
the content of this urn was generated by flipping a fair coin. If the coin landed
heads on the first flip, the urn was filled as per “The A Theory” described
below. If the coin landed heads on the second flip, the urn was filled as per
“The B Theory.” And so on through the 26th flip. If the coin did not land
heads on the first twenty-six flips, the process is started over until it lands
heads. By the time you are involved, the process has been completed and you
have in front of you an urn filled with exactly 1015 balls. You know the prior
probability of each theory. Because it is possible, albeit extremely unlikely,
that you will get more than 26 consecutive heads: the probability that the A
Theory is correct is 0.5 + (0.5)27 + (0.5)54 + · · · , which is approximately 0.5.
The probability that the B Theory is correct is 0.25+ (0.25)28 + (0.25)55 + · · · ,
which is approximately 0.25. In general, the probability that the ith theory is
correct is (0.5) · i+ (0.5)i+26 + · · · , which is approximately (0.5) · i. Finally, the
probability that the Z theory is correct is (0.5)26 + · · · , which is approximately
1.5 · 10−8. Here are the theories:

The A Theory: The urn was filled with 1015 −1 balls labeled “A” and one
labeled “Z”.

The B Theory: The urn was filled with 1015 −1 balls labeled “B”, and one
labeled “Z”.
...

The Z Theory: The urn was filled with 1015 balls labeled “Z” and no ball
with any other label.

Calculating the priors and posteriors is straightforward:

Pr(A) ≈ 0.5

Pr(Z |A) = 10−15

Pr(B) ≈ 0.25

Pr(Z | B) = 10−15

Pr(C) ≈ 0.125

Pr(Z | C) = 10−15

...

p(Z) ≈ 1.5 · 10−8
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Pr(Z | Z) = 1

Pr(Z | ∼A) = Pr(Z | B) · Pr(B | ∼A) + Pr(Z | C) · Pr(C | ∼A)

+ . . .+ Pr(Z | Z) · Pr(Z | ∼A)

≈ 10−15 · 0.5+ 10−15 · 0.25+ 10−15 · 0.125+ . . .+ 1 · 3 · 10−8

≈ 3.0000001 · 10−8

Suppose that you draw randomly from this urn and, to your considerable sur-
prise, you get a “Z” ball. Intuitively, the probability of Theory A drops dramat-
ically; Bayes’s Theorem tells a similar story:

Pr(A | Z) =
Pr(Z |A) · Pr(A)

Pr(Z |A) · Pr(A) + Pr(Z | ∼A) · Pr(∼A)

≈ 10−15 · 0.5
10−15 · 0.5+ 3.0000001 · 10−8 · 0.5

≈ 3 · 10−7

Now, we need only calculate Pr∗(A | Z). Suppose that you want your estimate
Pr∗(∼A) to be within one million parts of Pr(∼A) in the above sense.4 That is,
you want |Pr(∼A) − Pr∗(∼A)| < δ · Pr(∼A), where δ = 10−6.

As it happens, the sum of the probabilities of theories B throughW is easily
within one million parts of Pr(∼A) in this sense. That is,

Pr(∼A) − [Pr(B) + Pr(C) + Pr(D) + · · ·+ Pr(W)] < δ · Pr(∼A) = 5 · 10−7

Thus, we can safely define Pr∗(∼A) in this way:

Pr∗(∼A) =df Pr(B) + Pr(C) + Pr(D) + · · ·+ Pr(W)

As a result,

Pr∗(Z | ∼A) = Pr(Z | B) · Pr(B | ∼A) + Pr(Z |C) · Pr(C | ∼A) + · · ·+ Pr(Z |W) · Pr(W, ∼A)

≈ 10−15 · 0.5+ 10−15 · 0.25+ 10−15 · 0.125+ · · ·+ 10−15 · 10−7

≈ 10−15

This gives us:
4If you are inclined to think that one chance in a million is not a close enough approximation,

you can easily modify our example by taking a leaf from Dr. Seuss. Add a finite number of letters
between “A” and “Z” — this technique is known as In-Before-Zebra. Creativity is required here.
With each additional letter, for each theory increase the number of balls in the urn by one order
of magnitude, all eponymously labeled. For example, if you add 10 new letters to the alphabet,
increase the size of the hypothesized “R” urn to 1025 − 1 “R” balls and one “Z” ball. With this
process, one can drive δ down below any finite number you would feel safe ignoring. Of course,
each new letter drives the probability of drawing a “Z” ball from the urn still further down. But,
if you did draw a “Z” ball, the probability that Theory Z is true would be even closer to one.
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|Pr(Z | ∼A) − Pr∗(Z | ∼A)| ≈ |10−7 − 10−15| < δ

Now, let us use Bayes’s theorem to calculate Pr∗(A | Z):

Pr∗(A | Z) =
Pr(Z |A) · Pr(A)

Pr(Z |A) · Pr(A) + Pr∗(Z | ∼A) · Pr∗(∼A)

≈ 10−15 · 0.5
10−15 · 0.5+ 10−15 · 0.5

≈ 0.5

The approximation Pr∗(A | Z) ≈ 0.5 is not at all close to Pr(A | Z) ≈ 3 · 10−7.
In fact, it is off by about 7 orders of magnitude. Further, although drawing the
“Z” ball caused the actual probability of TheoryA to collapse, it did not change
the approximation of the probability of Theory A at all.

It is clear why Pr∗(A | Z) went so awry. After a “Z” ball is drawn, it is
almost certain that the Z Theory is true and therefore that the A theory false.
However, since the prior probability of the Z Theory was so low it was not
included in the approximation Pr∗(∼A), Pr(Z) played no role in the calculation
of Pr∗(Z | ∼A) and thus of Pr∗(A | Z).

But, although the absolute values of Pr(Z | ∼A) and Pr∗(Z | ∼A) are very
similar (they differ by less than δ, i.e., by less than 10−6), their ratio is very large.
In fact, since Pr(Z | ∼A) ≈ 3 · 10−7 and Pr∗(Z | ∼A) = 10−15, the likelihood ratio
Pr∗(Z | ∼A)/Pr(Z | ∼A) is about 3 · 107. This means that the genuine likelihood
ratio Pr(Z |A)/Pr(Z | ∼A) is about 3 · 107 times as large as the ersatz likelihood
ratio Pr(Z|A)/Pr∗(Z|∼A). Because of this large discrepancy in likelihood ratios,
Pr(A | E) when calculated against Pr∗(E | ∼A) will be very different than when
calculated against Pr(E |∼A). Since on most5 Bayesian theories of confirmation,
such large posterior probability (and likelihood ratio) discrepancies will lead
to large discrepancies in judgments of degree of confirmation, most Bayesian
confirmation theorists should eschew HITI.

Such phenomena do not arise only with urns. In fact, their possibility per-
meates science, even very well established theories.

3.2    
Let Tsphere =df The Earth is approximately a sphere and it does not rest on
anything. And, assume (arguendo) that Pr(Tsphere) = 0.999999.

There are a huge number of alternative theories to Tsphere, some already
proposed, many hitherto unproposed. Let ∼Tsphere =df the set of all theories
that hold that the Earth is not approximately spherical and/or does rest on
something. Given our rather arbitrary estimation of Pr(Tsphere) as 1 − 10−6,
this roughly sets Pr(∼Tsphere) at about 10−6. But nothing depends on the exact

5See previous discussion of Nozick (fn. 3, above). See, also, [5], which discusses some related
perils of using “approximations” in Bayesian confirmation theory.
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figure. If you’d like to make it even lower, that would be fine with us.

The set Tsphere can be divided into many very implausible theories:

Tsphere&turtle =df The Earth is approximately a sphere and it rests on the
back of a turtle;

Tsphere&2turtles =df The Earth is approximately a sphere and it rests on the
back of two turtles;

Tsphere&2+turtles =df The Earth is approximately a sphere and it rests on
the back of more than two turtles. [This last theory is to prevent an
infinite sequence of turtle theories. Such infinite sequences give rise to
other problems that we would prefer not to deal with here.]

...

Tsphere&elephant =df The Earth is approximately a sphere and it rests on
the back of one or more elephants that rest on nothing.

...

Tdisk =df The Earth is approximately a disk and it does not rest on any-
thing;

Tdisk&turtle =df The Earth is approximately a disk and it rests on the back
of a turtle;

Tdisk&elephant&turtle =df The Earth is approximately a disk and it rests on
the back of one or more elephants that rest on the back of a turtle.6

...

Ttorus =df The Earth is approximately a torus and it does not rest on
anything;

...

Ttetrahedron =df The Earth is approximately a tetrahedron it does not rest
on anything;

...

TMöbius =df The Earth is approximately a Möbius Strip and it does not
rest on anything;

6This theory has been advanced by Terry Pratchett in several recent publications.
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To ensure there are only a finite number of theories, we add a catchall theory:

Tresidual =df All the above theories are false.

Even the most plausible of the many many alternatives to the Earth-is-a-
Sphere-Resting-on-Nothing Theory is very improbable.

Now suppose that, ever since the first satellites were launched, all astro-
nauts, all photos, and all other measurements from space strongly indicate that
the Earth appears to have four corners, connected by roughly straight lines, ie,
the Earth looks approximately like a tetrahedron — a theory so implausible
that no one had bothered mentioning its possibility even to immediately dis-
miss it. It does not appear to rest on anything — not on turtles, not on a huge
double-helix, not on giant reproductions of the Mona Lisa, . . . . Let us call this
large amount of remarkable evidence E.

We don’t know how to precisely determine what Pr(Ttetrahedron) and Pr(E |

Ttetrahedron) are, but it seems obvious that the first is very small and the second
very close to 1. So, for our purposes, let’s just say that Pr(Ttetrahedron) = 10−7

and Pr(E | Ttetrahedron) = 1 − 10−12. Pr(E | Ttetrahedron) isn’t exactly 1 because
it is always possible that light in certain bizarre circumstances reflects from a
tetrahedron in such a way as to produces, e.g., the appearance of a sphere.

Our results don’t require that these numbers are precise. All that we need
are three very reasonable assumptions: (a) Pr(Ttetrahedron) is so small that it
is not included in calculating Pr∗(∼Tsphere), (b) Pr(E | Ttetrahedron) is extremely
close to 1, and (c) Pr(E | Tany non-tetrahedron theory) is much, much smaller than
Pr(E | Ttetrahedron). We will spare you the calculations.

Pr(Tsphere | E) ≈ 10−3

Pr∗(Tsphere | E) ≈ 0.99999

There is no doubt about it; Pr∗(Tsphere |E) is again a remarkably bad approx-
imation of Pr(Tsphere | E). Such cases are easy to create once one is in the right
mind-set — a stiff drink in front of the fireplace helps.

4       P∗(T | E)  
   P(T | E)?

When can a theory excluded from calculating Pr∗(∼T) result in Pr∗(T |E) being
so different from Pr(T | E)? As the examples indicate, Pr(T) being near 1 does
not make T safe. The rough answer is that T must entail that E is very unlikely
whereas there must be at least one very unlikely theory that says that E is very
likely. The very unlikely theory must be so unlikely that it is not included in
calculating Pr∗(∼T).

To state the problem a bit more formally, we are looking for the general
conditions for cases that satisfy these criteria, where it assumed that we know
all priors and likelihoods:
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(1) |Pr(∼T) − Pr∗(∼T)| < δ · Pr(∼T)

(2) |Pr(E | ∼T) − Pr∗(E | ∼T)| < δ (As we saw above, this follows from 1)

(3) |Pr(T | E) − Pr∗(T | E)| � δ

and/or

(3 ′) Pr∗(T | E)

Pr(T | E)
� 1

The choice of criterion between (3) and (3 ′) depends on whether one wants
the absolute difference between the approximation and the actual value to be
large or whether one wants their ratio to be high. Sometimes both (3) and
(3 ′) are satisfied. First we need some terminology. Let us call all the highly
implausible theories not included in calculating Pr∗(∼T) the “Residual” TResid.
We know by definition that Pr(TResid) < δ and the theorem above gives Pr(E |

TResid)·Pr(TResid) < δ. Since all other factors are held constant to satisfy criteria
(3) or (3 ′), Pr(E|TResid)·Pr(TResid) must make a substantial difference to the result
of Bayes’s theorem. The relevant forms of Bayes’s theorem will be:

Pr(T | E)

=
Pr(E | T) · Pr(T)

Pr(E | T) · Pr(T) + Pr(E | ∼T) · Pr(∼T)

=
Pr(E | T) · Pr(T)

Pr(E | T) · Pr(T) + Pr∗(E | ∼T) · Pr∗(∼T) + Pr(E | TResid) · Pr(TResid)

Pr∗(T | E)

=
Pr(E | T) · Pr(T)

Pr(E | T) · Pr(T) + Pr∗(E | ∼T) · Pr∗(∼T)

So, we are looking for the conditions under which adding Pr(E | TResid) ·
Pr(TResid) to the denominator results in Pr(T | E) being very different from
Pr∗(T | E). Since both Pr(TResid) and Pr(E | TResid) · Pr(TResid) are less than the
very small δ, we need the conditions where adding a very small number to the
denominator makes such a major difference to Pr(T | E).

This can happen iff

Pr(E | ∼TResid) · Pr(∼TResid)

Pr(E | T) · Pr(T) + Pr∗(E | ∼T) · Pr∗(∼T) � 1

That is, iff the rest of the denominator is much smaller than Residual. Of
course, if the rest of the denominator is much smaller than the Residual, the
numerator will be too. If Pr(E |T) ·Pr(T)+Pr∗(E | ∼T) ·Pr∗(∼T) is largish relative
to Pr(E | TResid) · Pr(TResid), then adding Pr(E | TResid) · Pr(TResid) to the denom-
inator will only slightly change the value of the denominator and thus of the
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overall fraction.

We can informally summarize these last few reflections, as follows.

One can legitimately ignore highly improbable theories in calculating the ap-
proximation Pr∗(T | E) iff at least one of these criteria is satisfied:

(i) For at least one of the theories Ti used in calculating Pr∗(T | E), the likeli-
hood Pr(E | Ti) is reasonably high.

or

(ii) For all of the theories Tj not used in calculating Pr∗(T | E), the likelihood
Pr(E | Tj) is reasonably low.

Of course, what “reasonably” means will somewhat depend on the purposes
behind the calculations. The urn and sphere cases show how seriously things
can go awry if neither of these criteria is satisfied. It is important to note
that both criteria deal with likelihoods, which are generally taken to be the
most objective and robust ingredients of calculations using Bayes’s Theorem.
As such, both subjective and objective Bayesians should see these criteria as
meaningful and probative.

5      ?

In one straightforward sense, the falsity of the HITI Assumption does not
matter to the practice of science. When situations that satisfy the two crite-
ria arise, many scientists see that they must take the initially very implausible
theory very seriously.

But, its falsity does matter to Bayesian applications to science, particularly
the history of science. No aspect of an adequate philosophy of science should
rely on a fallacious mathematical inference. This truism applies a fortiori to
approaches such as Bayesianism that get much of their strength from relying
on well-grounded probability theory. Its arguments should not depend on a
demonstrably false assumption. In its presently used form, HITI is demon-
strably invalid. Bayesians can only use a modified HITI, which applies only
when at least one of the following two criteria is satisfied:

(i) It is certain that there are no unknown theories according to which the
phenomenon in question is very probable.

or

(ii) The probability of the phenomenon is reasonably large, given at least one
of the known theories used in the calculation of the posterior.

We suspect that often in the history of science, neither criterion is satisfied.
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