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1 
Imre Lakatos’ Proofs and Refutations1 is a book well known to those who work
in the philosophy of mathematics, though it is perhaps not widely referred to.
Its general thrust is out of tenor with the foundationalist perspective that has
dominated work in the philosophy of mathematics since the early years of the
20th century. It seems to us, though, that the book contains striking insights
into the nature of proof, and the purpose of this paper is to explore and apply
some of these.

2      
2.1   
The contemporary conception of proof in logic and mathematics is dominated
by what one might call the Euclidean paradigm, since it is modeled on Euclid’s
Elements. One starts by laying down certain axioms which are clearly true. A
proof is then a logically valid deductive argument starting from the axioms,
and ending in a theorem. Since valid deductive arguments preserve truth, the
conclusion of the argument, the theorem, is thereby established as true.

1Lakatos (1976). Page references in what follows, unless otherwise specified, are to this.
Italics in all quotes are original.
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It takes little knowledge of the history of mathematics to realise that, at
least until the 20th century, mathematical proof—the form of argumentation
used by mathematicians to support their results—did not, generally speaking,
work in this way. This is for the very simple reason that, outside of geometry,
there weren’t any axiom systems. No one ever specified axioms for the real
numbers, negative numbers, infinitesimals. Indeed, even the natural numbers
were not axiomatized until the work of Dedekind in the late 19th century.

At least in the history of mathematics, then, mathematical proof was not
Euclidean proof.

2.2  
The conception of proof that emerges from Lakatos’ book, and one that ap-
pears to fit the history of mathematics more accurately, is quite different. A
proof, in this sense, is indeed an argument, but the argument starts from oppor-
tunistic places, simply with claims that appear to be true, and then proceeds by
argumentative steps that appear to be right, till the conclusion is established.

What is proved is proved very fallibly. Counter-examples to the theorem
or other parts of the proof may turn up; and when they do, we have to revise
the theorem, the proof, or the starting points, appropriately. The Euclidean
notion of proof is foundationalist: proofs are built up on the solid foundation
of axioms, with the theorems at the top. By contrast, Lakatosian proofs are
anti-foundationalist. To use a metaphor of Karl Popper,2 theorems are like
buildings built on swamps. The arguments are like piles that are driven down
into the swamp to support the building, but they never reach bedrock, and
may have to be replaced or driven down further, as required. Call the places
from which they start axioms if you like, but an axiom is just a good place to
stop—at least for the present. It seems true; but we may have to come back
and revise that judgment.

2.3  : ’ 
Lakatos illustrates his notion of proof with Euler’s Theorem concerning poly-
hedra. If the number of faces, vertices, and edges of a polyhedron are F, V , and
E, respectively, then V −E+ F = 2. Cauchy proved this as follows. The proof is
illustrated for a cube in Fig. 1 (reproduced from Fig. 3, p. 8). Remove one face,
and stretch out the rest on a flat surface. This reduces F by 1, but leaves V and
E alone. For the resulting figure we therefore need to prove that V − E + F = 1.
Now, for each polygonal face, join its corners until the only polygons left are
triangles. Each joining inserts one extra edge and one extra face. V − E + F

therefore remains unchanged. Now, starting at the outside, remove one trian-
gle at a time. In removing a triangle, there are two possibilities: (a) one edge
and one face disappear, (b) two edges, one vertex, and one face disappear. Both

2Logic of Scientific Discovery, Section 30 (1934).
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possibilities leave V − E + F unchanged. In the end, only one triangle is left.
This has three edges, three vertices and one face. Thus, V − E + F = 1, as
required.

 1

So much for the proof. But we can now note that there are some counter-
examples (refutations). Consider, for example, Fig 2. In Fig 2a (the “picture
frame”), V − E + F = 2 alright, but the proof does not work. If we remove the
top, we cannot stretch the rest out on a flat surface. Fig 2b (the “crested cube”)
is even worse. For this, V = 16, E = 24, and F = 11. So V − E + F = 3. Lakatos
calls these local and global counter-examples respectively (to just the proof, or
the proof and the theorem).

 2
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2.4   -
Several responses to counter-examples are possible. One is ‘monster barring’.
We declare that the counter-examples are not really polyhedra: they are just
monsters, and should be ignored. The response is obviously quite ad hoc: we
have no principled reason to rule them out—except that they violate the the-
orem. Another response, Lakatos terms ‘withdrawal to a safe domain’. We ob-
serve that neither of the counter-examples is convex. We therefore rephrase
our theorem as ‘For all convex polyhedra, V − E + F = 2’. This is better than
monster-barring, but the move is still a crude one. We may well have over-
withdrawn. Most importantly, the move ignores the information provided by
the proof.

By far the best response, according to Lakatos, is to analyse the proof in
the light of the counter-examples to see what has gone wrong, and how it can
be revised to avoid the anomoly. Thus, the picture frame exposes a hidden as-
sumption of our proof, namely that the removal of a face will leave something
that can be stretched out. If we remove the bottom of the crested cube, it can
be stretched out, but the annular face cannot be triangulated in the appropri-
ate way. Define a polyhedron to be a Cauchy polyhedron if it is such that the
operations of the proof can be performed on it. In the light of the analysis,
what the proof shows is that for all Cauchy polyhedra, V − E + F = 2.

Proof analysis is clearly methodologically superior to the other responses
mentioned. Not only does it leave us with an improved proof, it digs out hidden
assumptions, so we learn things we did not know before, and it generates new
concepts of a potentially fruitful kind.

This is just a small example of the wealth of example and methodologi-
cal discussion in Lakatos’ book. But it will suffice for the nonce. Lakatosian
proof is fallible, but the exploitation of the fallibility gives rise to mathematical
progress.

3    
3.1  19    
So much for proof in the history of mathematics. It might well be thought
that the situation is now essentially different. From a modern perspective,
past mathematical practice was rather sloppy. Concepts were not tied down
in advance; arguments were loose. No wonder that results were so fallible.
The 19th century drive for rigor, through the work of mathematicians such as
Weierstrass, produced a mathematics that has put an end to all that.

Rigor requires three things:

1. First, all concepts must be defined in terms of a set of basic concepts.
(The definitions cannot go on indefinitely on pain of infinite regress.)
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The 19th century mathematicians worked hard to define all their con-
cepts in more basic terms. Geometric entities, such as lines, could be
defined as sets of real numbers. Real numbers could be defined as sets of
rational, and ultimately natural, numbers. And natural numbers could be
defined themselves as certain sets. So sets emerged as the basic mathe-
matical concept.

2. Next, though the basic concepts cannot be defined in terms of anything
more basic, their behaviour needs to be tied down. This is done by
spelling out a set of axioms which characterise them. After a period
of various debates, mathematicians settled for contemporary Zermelo
Fraenkel set theory.

3. Finally, the logical rules to be applied in inferring from the mathematical
axioms must themselves be tied down. This produced so called ‘clas-
sical logic’, the logic of Frege and Russell. This, too, was spelled out
axiomatically (though most contemporary logicians prefer some kind of
natural-deduction formulation).

Lakatos was quite well aware of this, of course. In a long note (pp. 55-6),
he suggests that the method of proof-analysis itself gave rise to the increas-
ing rigor. Be that as it may; the result is a system of mathematics where Eu-
clideanism reigns. Not in practice, of course. Mathematicians do not give
formal axiomatic proofs—certainly not proofs in the logician’s sense. They
give informal arguments, much as they always have done, starting with things
which are generally accepted, and with lots of gaps in the argument. But in the-
ory, anyway. The arguments could, in principle, be spelled out as fully formal
axiomatic proofs; and if this is not the case, a mistake has been made.

3.2    
But, Lakatos thinks, this has not changed things essentially. Certain things
may be marked out as axioms, but these are simply conventionally accepted
stopping points; in due course, they themselves may be contested and revised
in the light of counter-examples. As he puts it (p. 56):

...different levels of rigor differ only about where they draw the line be-
tween the rigor of proof-analysis and the rigor of proof, i.e., about where
criticism should stop and justification should start. ‘Certainty is never
achieved’, ‘foundations’ are never found—but the ‘cunning of rea-
son’ turns each increase of rigor into an increase of content, in the
scope of mathematics.

Lakatos never lived to see the publication of his book. It was brought to
fruition by its two editors, John Worrall and Elie Zahar, whose view on the
matter differs from the one Lakatos expresses here. They say (pp. 56-7):
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We believe that [Lakatos’ view] underplays a little the achieve-
ment of mathematical ‘rigorists’. The drive towards rigor in math-
ematics was, it eventually transpired, a drive towards two separate
goals, only one of which was attainable. These two goals are, first,
rigorously correct arguments or proofs (in which truth is infalli-
bly transmitted from premises to conclusions) and, secondly, rig-
orously true axioms, or first principles (which are to provide the
original injection of truth into the system—truth would then be
transmitted to the whole of mathematics via rigorous proofs). The
first of these two goals turned out to be attainable (given, of course,
certain assumptions), whilst the second proved unobtainable.

Frege and Russell provided systems into which mathematics
could be (fallibly) translated..., and in which the rules of proof are
finite in number and specified in advance. It also turns out that
one can show (it is here that the assumptions just referred to come
in) that any sentence that can be proved using these rules is a valid
consequence of the axioms of the system (i.e., if these axioms are
true, the sentence proved must also be true). In these systems there
need be no ‘gaps’ in proofs, and whether a string of sentences is a
proof or not can be checked in a finite number of steps.... There
is no serious sense in which such proofs are fallible. (It may be
that everyone who has ever checked some such proof made an in-
explicable error, but that is not a serious doubt. It is true that the
informal (meta-)theorem that such valid proofs transmit truth may
be false—but there is no serious reason to think it is.) But the ax-
ioms of such systems are fallible in a non-trivial sense. The attempt
to derive all mathematics from ‘self-evident’, ‘logical’ truths, as is
well known, broke down.

According to them, then, logic, at least, is foundational.

3.3   
Lakatos and his editors are in agreement about the fallibility of set theory. Set
theory initially appeared at the hands of Cantor and Dedekind in an informal,
non-axiomatized, form. And it quickly spawned refutations, in the shape of the
contradictions that are the set-theoretic paradoxes. The theory was certainly
not, then, certain. After many discussions and debates, consensus settled on
an axiomatization, ZF(C)—Zermelo Fraenkel set theory with the Axiom of
Choice. (We will return briefly to the process by which this happened later.)
But it would indeed be foolish to suppose that these axioms are themselves
beyond challenge.

The Axiom of Choice was disputed almost as soon as it was formulated
explicitly. True, debates over it have now died down, but it would be an act
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of hubris to maintain that they could not be reignited. More recently, we have
seen debates over another of the axioms, the Axiom of Foundation. This says,
essentially, that all sets are in the Cumulative Hierarchy. Modern research into
non-well-founded set theory shows that an appeal to non-well-founded sets
(sets outside the hierarchy) makes perfectly good sense, and has fruitful appli-
cations.3

More fundamentally, as an axiomatization of the truths about sets, there is
something shaky at the very core of ZF. ZF avoids the paradoxes by denying
the existence of a totality of all sets, and other “large” sets. But mathematicians
are tempted all the time to make informal use of such sets. Category theory,
for example, appears to make essential use of them.4 The impulse for theories
that add other sorts of collections, proper classes, to the sets of ZF is but one
recognition of this fact. How adequate such measures are, we need not go into
here. It suffices for present to note that they indicate an insecurity about the
conceptual structure, and so the axioms, of ZF.5

The axioms of set theory, then, are soft. We might note, at this point, a
formalist move that might be made here. The whole project of trying to find
true axioms is misguided. What mathematicians do is simply set down any set
of axioms at will; they then spend their time proving theorems in the axiomatic
system specified.

This is not the place to discuss this view at great length. But it is a wildly
implausible one. Mathematical reasoning is often not axiomatic. If we need
a reminder of this, we have only to remember Gödel’s first incompleteness
theorem, which shows us that given any formal system of mathematics of the
appropriate kind, we appear to be able to establish things about the entities
in question by, but only by, reasoning outside the system. And if one attempts
to circumvent the first incompleteness theorem by an appeal to second order
logic, then this itself is not axiomatisable.

But more importantly, specifying arbitrary axiom systems is not mathemat-
ics. For a start, one can write down axiom systems for parts of physics, biology,
sociology, or anything else. There is nothing intrinsically mathematical about
axiomatic systems. Indeed, an arbitrary axiomatic system is likely to be de-
void of mathematical interest. If mathematicians construct axiom systems, it
is because they think that the axioms capture a notion of mathematical inter-
est and importance. They therefore have a pre-existing and informal grasp of
the notion (which is not to say that the grasp cannot be improved by suitable
axiomatization, amongst other things). The intuitions in question always stand
as an independent check on the axioms, and, in principle, can clash with the
theorems of the system at any time.

3See Aczel (1988) and, e.g., Barwise and Moss (1996).
4See Priest (1987), 2.3.
5For further discussion, see Priest (1995), ch. 11.

Graham Priest and Neil Thomason, “60% Proof”, Australasian Journal of Logic (5) 2007, 89–100

http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2007 96

3.4  
Let us now turn to the Editors’ claim that infallibility has at least grounded out
in logic—classical logic, they obviously have in mind. We find it, frankly, amaz-
ing, that the they could have made this claim. Even when Proofs and Refutations
was published, intuitionist logic was well known, as were Brouwer’s claimed
counter-examples to principles such as the Law of Excluded Middle. The Edi-
tors may well not have liked such examples, but as Lakatos demonstrates, many
mathematicians did not like the putative counter-examples to Euler’s Theorem
either. Logical axioms are just as soft as set-theoretic ones.

Maybe, in the present state of play, even softer. Since the 1970s we have
seen a remarkable growth in non-classical logics.6 Many of these take off from
aspects of classical logic for which there are apparent counter-examples. Log-
ics with truth value gaps accommodate sentences that appear to be neither
true nor false. Free logics accommodate singular terms that appear not to de-
note. Relevant logics avoid the highly counter-intuitive “paradoxes of material
implication”. All such counter-examples, and the logics to which they give rise,
are, of course, disputable. But that is beside the point. They show that logic
has no privileged exemption from fallibility.7

In this context, it is illuminating to consider for a while one particular kind
of refutation of classical logic: the paradoxes of self-reference. Sentences like
‘this sentence is false’ quickly give rise to contradictions, showing, apparently,
that something can be both true and false—a possibility that certainly cannot
be accommodated in classical logic.

Logicians and mathematicians have often reacted to these refutations with
the same kind of stratagems that Lakatos described.8 A lot of monster-barring
goes on: such sentences are monsters of some kind: they are not to be taken
seriously. They do not express propositions, or they “malfunction”—whatever
that might mean.9 They may therefore be set aside. Alternatively, some logi-
cians have simply withdrawn to a safe domain. Tarski’s hierarchy can be seen
in this light. As long as we consider only sentences that can be expressed in
the appropriate hierarchy, contradictions cannot arise. But as subsequent work
has shown, languages with their own truth predicates can express things not ex-
pressible in the Tarski hierarchy, quite consistently. The constraints imposed
by the hierarchy are overly-restrictive.10

6See, e.g., Priest (2001).
7One might suggest that it is some particular inferences, rather than systems thereof, that

are immune from doubt. But in fact, there is no significant principle of inference that is not
problematised in some non-classical logic or other: the Law of Excluded Middle, and Double
Negation (intuitionist logic) the Law of Non-Contradiction, Contraposition (some paracon-
sistent logics), Distribution (quantum logics), Modus Ponens (some fuzzy logics), Conjunction
Elimination (connexive logics).

8We do not wish to suggest that all contemporary consistent approaches to the semantic
paradoxes display these methodological vices.

9See, e.g., Smiley (1993).
10See, e.g., Kripke (1975).
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Such stratagems are as methodologically unsatisfactory in this case as they
were in the one that Lakatos discussed. If we take the self-referential exam-
ples seriously, what they appear to show is that the Law of Non-Contradiction
(LNC) is not acceptable. Some sentences of the form A ∧ ¬A are indeed true.
The Law might be something we are accustomed to take for granted, but the
whole function of refutations is precisely to cause us to question things the
truth of which we have taken for granted.

Actually, this is not quite right. One can have the LNC, at least in the
form ¬(A ∧ ¬A), as well as a contradiction. True, we then get a secondary
contradiction, (A ∧ ¬A) ∧ ¬(A ∧ ¬A), but that is no worse than the original
contradiction. What one cannot have is the law of Explosion, A ∧ ¬A ` B.
This is what the paradoxes of self-reference really refute—and Explosion, in-
cidentally, is a lot softer than the Law of Non-Contradiction. Historically, its
place in logic has always been less than secure.11 Partly fuelled by the paradoxes
of self-reference, we have witnessed in the lasts 40 years the development of
paraconsistent logics, logics where Explosion fails.

But let us take matters a little further. Explosion is not something that is
likely to be accepted simply because it recommends itself. (Aristotle, for exam-
ple, rejected it, even though he subscribed to the LNC.) It is usually accepted
because it follows from other things. Perhaps the most famous argument for
Explosion—probably invented in about the 12th century, and certainly known
to medieval logicians, is as follows:

A ∧ ¬A

A

A ∧ ¬A

¬A

¬A ∨ B

B

The paradoxes of self-reference, taken seriously, plus a B that is not true, pro-
vide a global counter-example to this argument. Where to point the blame?
Most paraconsistent logicians finger the final step, the Disjunctive Syllogism,
A,¬A ∨ B ` B. The failure of this is certainly more surprising than that of
Explosion. The inference would appear to be applied in naive reasoning much
more frequently, for example. Once viewed through the eyes of the paradoxes,
though, it is clearly moot. The rule gets its appeal from the thought that A

rules out ¬A (that is, you can’t accept both A and ¬A); so given ¬A ∨ B, we
must have B. But given the possibility of paradoxical sentences, A precisely
does not rule out ¬A. So one would expect the principle to fail. Its tenure
in thinking is the result, perhaps, of simply being unaware of, or forgetting,
or not taking seriously, unusual cases. Surprising the failure may be. But the
whole point of proof analysis in the light of a counter-examples is trace back
blame, and so expose the illegitimate assumptions which are being taken for
granted. We should expect to be surprised.

11See Priest (2007), section 2.
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In any case, Lakatos got it right, and his Editors got it wrong: modern logic
is no more infallible than any (other?) part of mathematics.

3.5   
Before we conclude, let us return briefly to set theory. ZF set theory arose
from informal set theory, partly in response to the set-theoretic paradoxes of
self-reference. Its formulation was, it might well be thought, somewhat op-
portunistic. Zermelo and his co-workers wrote down a bunch of axioms that
seemed to suffice for proving the things they wanted to prove and which did
not allow the proof of contradiction. But the axiom system came later to ap-
pear more principled. The standard model of ZF is the cumulative hierarchy.
This is what the axioms are most naturally taken to characterise. From this
point of view, the situation appears to be a version of withdrawal to a safe do-
main. Set theoretic contradictions do not arise, it is true, but that is because
we have withdrawn to a simple safe area. We have overwithdrawn, as the ap-
pearance of non-well-founded set theory suffices to remind us.

Indeed, in a paraconsistent context, even this withdrawal may be too se-
vere. Cantor, who was well acquainted with the paradoxes of set theory, dis-
tinguished between consistent and inconsistent totalities.12 Modern set theory
has withdrawn entirely to the realm of the consistent totalities, leaving all the
others outside. Of course, what is outside makes little sense if one subscribes
to Explosion. The inconsistent collapses into the formless. But Cantor’s logic
is not that of Frege and Russell, and there is no reason to suppose that he sub-
scribed to Explosion (as far as we know, anyway13). Certainly, once one takes
paraconsistency seriously, one can recognise transconsistent set theory, just as
much as transfinite.

4 
Let us bring this discussion to a conclusion with one further point. As we saw
in the quote from Lakatos that we gave, the method of proof analysis gives
rise to the growth of mathematics. His case study in Proofs and Refutations
shows how this may be so. The rise of paraconsistent logic demonstrates yet
another twist of the “cunning of reason”. As we have just observed, paraconsis-
tent logic allows for the recognition of a whole new mathematical realm, ripe
for mathematical investigation, transconsistent set theory. More generally, the
consistent is a special case of the inconsistent. In the semantics of all paracon-
sistent logics there is a space of interpretations. And standardly, a subspace of
this is constituted by the classical interpretations. These interpretations may

12Cantor, (1899). For a discussion, see Priest (1995), 8.6.
13What Cantor, who, like most mathematicians, reasoned informally, and who appeared to

have no interest in formal logic, would have said about Explosion, or the arguments for it, one
will presumably never know.
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be investigated as ever. Paraconsistent logic does not abolish the investigation
of consistent structures. What it does is expand the domain of what can be in-
vestigated. It allows us to investigate inconsistent structures and theories in a
way that was unthinkable before.14 This is, we think, a remarkable instalment
in the growth of mathematics.

At any rate, and to return to the main theme of this paper. The Euclidean
conception of proof cannot characterise the history of mathematics. Lakatos’
conception of proof as a fallible enterprise, starting from things that appear
to be true, but which are subject to revision in the light of counter-examples,
appears much more plausible. Developments in the last 100 years have not
changed this picture essentially. Mathematicians and logicians are undoubtedly
much more self-conscious about formulating the starting points, their axioms.
But the axioms are no infallible epistemological bedrock. They are merely
places where proof may stop, pro tem; they are still liable to be challenged by
appropriate counter-examples.15 And this is just as true of the axioms of logic
as those of mathematics. The development of paraconsistent logic can be seen
as a clear case of this.16
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