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Abstract: We construct an atomic uncountable theory with no prime
models. This contrasts with the countable case.

We follow the standard textbook [1]. We start with the basic definitions to
set up the notation. Let L be a first order language, and T be a complete theory
in L. A formula φ(x0, . . . xn−1) is complete in T if for all ψ(x0, . . . xn−1), we
have

T |= φ→ ψ or T |= φ→ ¬ψ.

A formula θ(x0, . . . xn−1) is completable in T iff there is a complete formula
φ(x0, . . . xn−1) with T |= φ → θ. A theory T is atomic if every L formula
which is consistent with T is completable in T . An L-structure M is said to
be atomic, if every n-tuple a0, . . . an−1 ∈ M satisfies a complete formula in
Th(M). A model M is a prime model if it embeds elementarily in any model
of Th(M). A Theorem of Vaught [1] 2.3.2 says that If T is a complete countable
theory, then T has a countable atomic - equivalently a prime model - if and
only if it is atomic. The proof in the countable case appeals to the Henkin-
Orey omitting types theorem which we recall. Let Σ be a set of formulas. T
locally realizes Σ if there is a formula φ(x0, . . . xn−1) in L such that

(i) φ is consistent with T

(ii) For all σ ∈ Σ, T |= φ→ σ.

T locally omits Σ iff T does not locally realize Σ. Thus T locally omits Σ if if
and only if for any formula φ(x0 . . . xn−1) which is consistent with T , there
exists σ ∈ Σ such that φ∧¬σ is consistent with T . M omits Σ if no tuple in M

realizes all formulas in Σ. The Omitting Types Theorem [1] 2.2.15. states that
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 1 (Henkin-Orey)Let T be a consistent theory in a countable languageL, and
for all i < ω, let Σi(x1 . . . xn) be a set of formulas in ni variables. If T locally omits
each Σi, then T has a model which omits each Σi.

Now the idea of Vaught’s Theorem is follows. Let T be an atomic theory. For
each n < ω, let Σn be the negation of complete formulas ψ(x0 . . . xn−1) in T .
Then T locally omits each set Σn. A model omitting all Σn will be the desired
model [1] 2.3.5. We show that the non-trivial implication (T is atomic implies
T has a prime model) does not hold for uncountable languages of any greater
power. The question as to wether Vaught’s Theorem extends to the uncount-
able case, is natural, however to the best of our knowledge it was not dealt
with in the literature. (It is proved though that atomic theories of size 6 ℵ1
do have atomic models [4] and [3].) For a language L, MdL denote the class of
L structures and FL denotes the set of L formulas.

Proof: Let T
′0 = (T0, <0) be a normal Aronszajn tree.i.e,

(1) T
′0 is a poset, and

(2) for every a ∈ T0, T0|a = {x ∈ T0 : x <0 a} is well ordered by <0. If for
any ordinal β

T0β = {a ∈ T0 : the order type of (T0|a, T0|a �<0) = β}.

Then the following hold:

(3) |T00 | = 1.

(4) There are no ordered subsets of T
′0 of order typeω1.

(5) For every β < ω1, |T0β| 6 ℵ0.

(6) If β < ω1 is a limit ordinal , a, b ∈ T0β and T0|a = T0|b, then a = b.

(7) Each a ∈ T0 has ℵ0 immediate successors.

(8) If β < µ < ω1 and x ∈ T0β then there is a y ∈ T0µ such that x <0 y. (It is
well known that in ZFC normal Aronszajn trees exist.)
Let L be a first order language with one binary relation symbol< and ℵ1
unary relation symbols Tβ(β < ω1). Let T0 = (T

′0, T0β)β<ω1 ∈ MdL.

Let Σ = Th(T
′0), the first order theory of T0. Then Σ is complete.

Define T1 as follows

T1 = {f : f is a function from β < ω1 intoω

with |{β : f(β) > 0}| < ℵ0}.
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Let T
′1 = (T1, <1) where

f <1 g iff f ⊆ g.

For β < ω1, define T1β as follows :

T1β = {f ∈ T1 : Dom(f) = β}.

Now let
T1 = (T

′1, T1β)β<ω1 .

We now prove

(9) T1 |= Σ so that T0 ≡ T1.

(10) Σ is atomic.

(11) Every elementary submodel of T0 satisfies (4) but no elementary sub-
model of T1 satisfy (4).This will prove our result (because a prime model
would be elementary embeddable in T0 and T1. )
By (2), (3) and (6), T

′0 is a meet semilattice. It is also easy to see that
T
′1 is a meet semilattice. We shall work in a definitional expansion of

(L, Σ) with a binary relation . with definition

(∀v0∀v1∀v2)(v2 = v0.v1 ←→ v2 6 v0 ∧ v2 6 v1∧

∀v3)(v3 6 v0 ∧ v3 6 v1 −→ v3 6 v2)).

(12) T1 satisfies (1) − (3) and (5) − (8).

For k,m ∈ ω and β ∈ ω1, let φk,m,β ∈ FL be defined as Tβ(vk.vm).

For n ∈ ω, i < 2 and q ∈ nT i define

Γq = {φk,m,β : k,m < n, and Ti |= φk,m,β[q]}.

For any q ∈ nT i, let φq =
∧
Γq. For i, j < 2, n ∈ ω, q ∈ nT i and

r ∈ nT j define
qInr iff |= φq ←→ φr.

By (7) (8) and (12) we have

(13) if q ∈ nT i and r ∈ nT j, qInr and a ∈ T i, then there is a b ∈ T j such
that

(q0, . . . qn−1, a)In+1(r0 . . . rn−1, b)

Using (13) for i 6= j (9) follows. By (13) again, for i = j = 0 , for every
q ∈ nT0, φq is an atomic formula. This proves (10). Now we prove (11).
Trivially every elementary submodel of T0 satisfies (1)-(8). Let

T∗ = (T∗, <∗, T∗β)β<ω1
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be an elementary submodel of T1. For any β < ω1, choose fβ ∈ T∗β.
Define H : ω1 → ω1 by

H(β) = the greatest µ such that fβ(µ) 6= 0, if such µ exists

= 0 otherwise .

H is well defined since {µ : fβ(µ) 6= 0} is finite. H is a regressive func-
tion so by Fodor’s theorem [2][8.7], there exists a µ < ω1 such that
|H−1{µ}| = ℵ1. T∗µ is countable so by (8) there is an h ∈ T∗µ such that for
each δ, if µ < δ < ω1, then h∪ {(k, 0) : µ < k 6 δ} ∈ T∗. It follows thus
that

{h ∪ {(k, 0) : µ < k 6 δ} : µ < δ < ω1}

is an ordered subset of (T∗, <∗) of order typeω1. �
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