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Abstract: In this paper we discuss strong normalization for natural
deduction in the→ ∀ - fragment of first-order logic. The method
of collapsing types is used to transfer the result (concerning strong
normalization) from implicational logic to first-order logic. The
result is improved by a complement, which states that the length
of any reduction sequence of derivation term r in first-order logic
is equal to the length of the corresponding reduction sequence of
its collapse term rc in implicational logic.

Our basic logic calculus is the→ ∀ - fragment of minimal natural deduction
for first-order logic over simply typed lambda-terms. This restriction regarding
the minimal fragment does not mean a loss in general, since the full classical
first-order logic can be embedded in this system by adding stability axiom.
The method of collapsing types developed in [2] is used to get some results
concerning the strong normalization of derivation terms in first-order logic.

1 
Let us fix our language. Assume that we have a countable infinite set of func-
tion symbols f, g, h . . ., and predicate symbols P,Q, R . . ., each of arity > 0.
Terms (object terms) d, e, . . ., are defined inductively from object variables
x, y, z . . ., by the following rules:

1. object variable x is a term,

2. if ~d is a list of terms and the arity of function symbol f is the length of
the list ~d, then f~d is a term,
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3. terms are defined only by rules 1 and 2.

The set FV(d) of free object variables of an object term d is defined as
usual.

Atomic formulas are ⊥ (falsity) and P~d, where ~d is a list of terms, P is a
predicate symbol and the arity of P is the length of ~d.

Formulas are built from atomic formulas by implication ϕ→ ψ and univer-
sal quantification ∀xϕ.

Derivation terms rϕ, tϕ, sϕ, qϕ . . . (and also its set FA(rϕ) of free assump-
tion variables) are built from assumption variables uϕ, vϕ, wϕ . . . by the intro-
duction and elimination rules for→ and ∀:

ϕ— uϕ is a derivation term with FA(uϕ) = {uϕ};

→+ — implication introduction — if rψ is a derivation term, then
(λuϕrψ)ϕ→ψ is a derivation term with FA((λuϕrψ)) = FA(rψ) \ {uϕ};

→− — implication elimination — if tϕ→ψ and sϕ are derivation terms, then
(tϕ→ψsϕ)ψ is a derivation term with FA(tϕ→ψsϕ) = FA(tϕ→ψ) ∪
FA(sϕ);

∀+ — universal quantification introduction — if rϕ is a derivation term and
x is an object variable which satisfies the condition x /∈ ∪{FV(ψ)|uψ ∈
FA(rϕ)}, then (λxrϕ)∀xϕ is a derivation term with FA(λ xrϕ) = FA(rϕ);

∀− — universal quantification elimination — if t∀xϕ is a derivation term and d
is an object term, then (t∀xϕd)ϕx[d] is a derivation term with FA(t∀xϕd)
= FA(t∀xϕ).

We write rϕ
[
u
ψ1
1 , . . . , u

ψm
m

]
to indicate that the assumption variables free

in rϕ are in the list uψ11 , . . . , u
ψm
m . We also use the notation r : ϕ instead of

rϕ.

 1 A formula ϕ is called derivable from assumptions ψ1, . . . , ψm,
if there is a derivation term rϕ

[
u
ψ1
1 , . . . , u

ψm
m

]
with different assumption vari-

ables uψ11 , . . . , u
ψm
m .

In the case of classical logic: for any predicate symbol P the term stabP :

∀~x.¬¬P~x→ P~x is a derivation term.
From now on we will use the word term for derivation terms (until there is

no confusion with the notion of object terms) and type for formulas.
As we have mentioned the → ∀ - fragment of minimal logic contains full

classical first-order logic. As in [1] (Subsections 1.1 and 2.1) this can be seen as
follows:
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1. Associate with any formulaϕ in the language of classical first-order logic
a finite list ~ϕ of formulas in our→ ∀ - fragment, by induction on ϕ:

P~d 7→ P~d
¬ϕ 7→ ~ϕ→⊥

ϕ→ ψ 7→ ~ϕ→ ψ1, . . . , ~ϕ→ ψn

ϕ∧ψ 7→ ~ϕ, ~ψ

ϕ∨ψ 7→ (~ϕ→⊥), (~ψ→⊥)→⊥
∀xϕ 7→ ∀xϕ1, . . . ,∀xϕm
∃xϕ 7→ ∀x(~ϕ→⊥)→⊥

where we write ~ϕ→ ψ for (ϕ1 → (ϕ2 → · · · (ϕm → ψ) · · ·)).

2. In any model M, where ⊥ is interpreted by falsity, we clearly have that a
formula ϕ in the language of full first-order logic holds under an assign-
ment α iff all formulas in the assigned sequence ~ϕ hold under α (in our
→ ∀ - fragment of minimal logic).

3. Our derivation calculus for the→ ∀ - fragment is complete in the follow-
ing sense:
a formulaϕ is derivable from stability assumptions ∀~x.¬¬P~x→ P~x for all
predicate symbols P inϕ iffϕ is valid in any model under any assignment.

2  
It was shown in [1] that for pure implicational logic any term can be reduced to
a normal form (w.r.t.→1 conversion, the one step reduction usingβ-conversion
rule) and this form is uniquely determined. Moreover, it was shown that any re-
duction sequence terminates, i.e. any term is strongly normalizable. A deriva-
tion term is said to be in normal form if it is impossible to perform a reduc-
tion. Here we use the method of collapsing types (ref [2]) to transfer the result
(concerning strong normalization, obtained in [1]) from implicational logic to
first-order logic.

It must be mentioned that the general β-conversion rule is extended to
first-order logic. In particular, we have

(λuϕtψ)sϕ converts into (→1)tu []

where t, s are derivation terms, u is an assumption variable; and

(λxrϕ)d converts into (→1)rϕx[d]

where x is an object variable, d is an object term and r is a derivation term.
For any formula ϕ of first-order logic we define its collapse ϕc by
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(P~d)c ≡ P (c1)
(ϕ→ ψ)c ≡ ϕc → ψc (c2)

(∀xϕ)c ≡ > → ψc (c3)

where > :≡⊥→⊥ (i.e. > means tautology). Though, ⊥ is an atomic formula it
behaves like predicate symbols, i.e. (⊥)c ≡⊥, therefore (>)c ≡ >.

For any derivation term rψ in first-order logic we can now define its collapse
(rψ)c. It is obvious from this definition that for any derivation term rψ in first-
order logic with free assumption variables uϕ11 , . . . , u

ϕm
m the collapse (rψ)c is

a derivation term (rc)ϕ
c in implicational logic with free assumption variables

u
ϕc1
1 , . . . , u

ϕcm
m .

(uϕ)c ≡ uϕ
c (c4)

(λuϕr)c ≡ λuϕ
c
rc (c5)

(tϕ→ψsϕ)c ≡ tcsc (c6)
(λxr)c ≡ λu>rc (c7)

(t∀xϕd)c ≡ tc(λz⊥z⊥)> (c8)

Note that for any derivation term rψ, assumption variable uϕ and deriva-
tion term sϕ we have that rc [sc] is a derivation term in implicational logic
(where the substitution of sc is done for the assumption variable uϕc ), which
is the collapse of r [s]. Also for any derivation term rψ, object variable x and
object term d we have that rx [d] is a derivation term of ψx [d] with collapse
(rx [d])c ≡ rc.

 1 If r →1 r′ in first-order logic, then rc →1 (r′)c in implicational logic ( [1]
- Subsection 2.2).

From Lemma 1 and the theorem, which states that any term in implica-
tional logic is strongly normalizable, the following main result was obtained in
[1]:

 2 Any derivation term r in first-order logic is strongly normalizable.

Indeed, since the collapse rc of the term r is a term in implicational logic
and any term in implicational logic is strongly normalizable, i.e. any reduction
sequence starting from rc terminates, then from Lemma 1 we conclude that
any reduction sequence starting from r also terminates, hence r is strongly
normalizable. But it is still conceivable that r terminates (in terms of reduction
sequence) before rc, i.e. the reduction sequence of rc as defined is longer
than the reduction sequence of r that we chose. Our aim is to show that it is
impossible, and both of the terms do the same number of one-step reductions.

First of all it is necessary to emphasize that it is not so obvious, since there
is no bijective correspondence between a derivation term in first-order logic
and its collapse.
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. Although, to any derivation term in first-order logic we identically
associate collapse, it is not necessary for the converse to be true. The following
instances illustrate this fact.
 1. Assume the collapse is tc = λu>rc. Then there are two

possible forms of derivation term t (ambiguity):

1. on the one hand, since >c ≡ >, then tc = λu>rc = λu>
c
rc = (λu>r)c

according to (c5); so, t = λu>r;

2. on the other hand, tc = λu>rc = (λxobjr)
c according to (c7); so, t =

λxobjr.

We write xobj instead of x to indicate the fact that x is an object variable.
This notion is extended on object terms too, e.g. dobj instead of d. For the
convenience, sometimes the obj pattern will be omitted, but implied.
 2. Assume ϕc = > → P, where P is any predicate symbol. Then

there are two possible forms of a formula ϕ (ambiguity):

1. on the one hand, since (⊥→⊥)c = >c ≡ > = (⊥→⊥), then ϕc = > →
P = (⊥→⊥)→ P = (⊥→⊥)c → Pc = ((⊥→⊥)→ P)c according to (c1)
and (c2); so, ϕ = (⊥→⊥)→ P = > → P;

2. on the other hand, ϕc = > → P = > → Pc = (∀xobjP)c according to
(c3); so, ϕ = ∀xobjP.

Now we reformulate Theorem 2:

 3 Any derivation term r in first-order logic is strongly normalizable. More-
over, for any reduction sequence r = r1 →1 · · · →1 rn = r′ of a derivation term
r with normal form r′, the length is identical to the length of the reduction sequence
rc = rc1 →1 · · · →1 rcn = (r′)c in implicational logic and (r′)c is the normal form of
rc.
Proof: The first part of the theorem is plain due to Theorem 2. From Lemma
1 it simply follows that if rc terminates, so does r. It remains to prove that if r
terminates, so does rc, i.e. rc terminates as soon as r. Assume that r→∗ r′ and
r′ is the normal form of r; that is r terminates and the last term of normaliza-
tion reduction sequence is r′. Here→∗ denotes transitive and reflexive closure
of→1. From Lemma 1 we obtain that rc →∗ (r′)c as well. Now it should be
proved that (r′)c cannot be normalized further, i.e. it terminates.

Let us suppose the opposite and come to contradiction. It means that there
exists a term r′′c such that (r′)c →1 r′′c . So we have the next structure-view:

r →∗ r′ - terminates
⇓c ⇓c
rc →∗ (r′)c →1 r′′c
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Therefore, we conclude that (r′)c has a form

(r′)c = tLc((λuctc)sc)t
R
c

hence
r′′c = tLc(tcu [sc])t

R
c

where tLc and tRc are arbitrary terms and may be empty.
Let us denote by tMc the middle part of (r′)c

tMc ≡ (λuctc)sc.

More exactly (r′)c has one of the two following forms:

() [tLc((λuctc)sc)]t
R
c = (tLc t

M
c )tRc ,

() tLc [((λuctc)sc)tRc ] = tLc(t
M
c t

R
c ).

. By τ(s) we denote the type of derivation term s, e.g. τ(sϕ→ψ) =

ϕ → ψ. Let us consider the term tc((λz⊥z⊥)>)c in case when τ(tc) = > →
ϕc = >c → ϕc. It is obvious that ((λz⊥z⊥)>)c = (λz⊥z⊥)>. According
to (c6) and (c8) there are two possible forms of term r which collapse is rc =

tc((λz⊥z⊥)>)c:

1. on the one hand r = t>→ϕ(λz⊥z⊥)>;

2. on the other hand r = t∀xobjϕdobj.

Inter alia, this remark can be viewed as one more example, which shows
the accuracy of the note about inverse problem mentioned above.

We now consider the two forms of (r′)c:
   ():

(r′)c = (tLc t
M
c )tRc

We consider two cases depending on the form of tRc .

 (-1). tRc = (λz⊥z⊥)> = ((λz⊥z⊥)>)c.
Let us denote: qc ≡ tLc((λuctc)sc), hence (r′)c = qc((λz⊥z⊥)>)c.
From the remark mentioned above we obtain that either

r′ = q>→ϕ(λz⊥z⊥)>

or
r′ = q∀xϕd.
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 (-1-1). r′ = q>→ϕ(λz⊥z⊥)> and qc = tLc((λuctc)sc) = tLc t
M
c and

τ(qc) = > → ϕc.
Since tMc = (λuctc)sc 6= (λz⊥z⊥)> then according to (c4)-(c8) we con-
clude that there is only one possible form for qc, that is-(c6). It fol-
lows that ∃ tL, tM terms, which satisfy these equations: tLc = (tL)

c and
tMc = (tM)c, hence qc = (tL)

c(tM)c. Let us denote: (tML)
c ≡ λuctc,

so we have (tM)c = (λuctc)sc = (tML)
csc. Depending on the form

sc (= (λz⊥z⊥)> or not) we get either tM = t
∀xψ
ML s, where s = eobj,

or tM = t
ψ→ω
ML s, where sc = sc (sc is a derivation term). As we

have (tML)
c ≡ λuctc, then according to (c5) and (c7) there are two

possible forms of term tML which collapse is λuctc: tML = λxobjt,
if τ(uc) = > or tML = λut, if τ(uc) 6= >, where uc = uc and
tc = tc. Therefore, tMc = (tM)c = [(λxobjt)eobj]

c or tMc = (tM)c =

[(λut)s]c, which means that in both cases the term r′ contains subterm
(λxobjt)eobj or (λut)s respectively, i.e. we could have performed one
more →1 reduction for r′, which contradicts our theorem condition
that r′ terminates.

 (-1-2). r′ = q∀xϕd and qc = tLc((λuctc)sc) = tLc t
M
c and τ(qc) =

> → ϕc. This case is similar to the case (a-1-1).

 (-2). tRc 6= (λz⊥z⊥)>.
According to (c4)-(c8) we conclude that there is only one possible form
for (r′)c, that is (c6): it follows that r′ = qϕ→ψtR , where (tR)c = tRc and
qc = tLc t

M
c , hence we come to the case (a-1-1) when τ(qc) = ϕc → ψc.

   ():
(r′)c = tLc(t

M
c t

R
c )

Since tMc tRc does not have the form (λz⊥z⊥)>, it follows that according to
(c4)-(c8) there is only one possible form for (r′)c, that is (c6). Hence, r′ = tL q,
where (tL)

c = tLc and qc = tMc t
R
c = ((λuctc)sc)t

R
c . According to (c4)-(c8) qc

may have one of the two following forms: (c6) or (c8). Depending on the form
of tRc (= (λz⊥z⊥)> or not) we get either q = tMdobj, where (tM)c = tMc or
q = tMtR, where (tM)c = tMc and (tR)c = tRc respectively. In both cases we
have tM which satisfies the equation (tM)c = (λuctc)sc. The rest is similar
to the case (a-1-1).

All the cases have been considered, hence the theorem is proved by the
methods of contradiction. �

Using the last result (Theorem 3) the upper bound for the length of arbi-
trary reduction sequences obtained in [3] (obtained only for implicational logic)
can be extended to include first-order logic. So we obtain, that in first-order
logic any reduction sequence for a term r is bounded by

2g(rc)(l(r
c)) ,
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where rc is the collapse of the term r, l(rc) and g(rc) denote the length
and degree of the term rc respectively. Here 2m(n) is recursively defined by
20(n) = n and 2m+1(n) = 22m(n).
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