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Abstract: We develop the machinery for performing forcing over an
arbitrary (possibly non-wellfounded) model of set theory. For con-
sistency results, this machinery is unnecessary since such results
can always be legitimately obtained by assuming that the ground
model is (countable) transitive. However, for establishing prop-
erties of a given (possibly non-wellfounded) model, the fully de-
veloped machinery of forcing as a means to produce new related
models can be useful. We develop forcing through iterated forc-
ing, paralleling the standard steps of presentation found in {19} and

[r4l.

In this paper, we develop the basic theory of forcing in the context of arbi-
trary (rather than transitive) models of ZFC. For the purpose of establishing
relative consistency results, it is always possible to use a (countable) transitive
ground model, and the forcing machinery in this setting has already been well
developed (see for example [19]). There are occasions, however, in which the
objective is of a more model-theoretic nature; for instance, in studying various
types of extensions of a given, possibly non-wellfounded model M of set the-
ory, one may wish to consider forcing extensions of the model as a source of
examples. In the literature, the usual way of addressing this need is to work
with the Boolean-valued model MB, for some complete Boolean algebra B,
or to construct a Boolean ultrapower of M, again relative to some complete
Boolean algebra B; these techniques are discussed in [11}. In many such cases,
it could be useful to have on hand the fully developed machinery of forcing for
arbitrary models. The purpose of this paper is to fill this need.

A folklore insight about the matter is that roughly the same theorems
ought to hold true in the non-wellfounded case as for the transitive case (see
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for example {20} p. 2]). But if one attempts to formulate the results for the gen-
eral case precisely, many questions arise. For example, one would not expect
the forcing extension Mg of a non-wellfounded model M to be the “smallest”
model including M and containing G (a result we call the Minimality Theo-
rem), though this assertion is true if M is transitive. One might instead expect
that the many forcing results of this kind, in the context of possibly ill-founded
models, would now be true “up to isomorphism,” in an appropriate sense. But
then, how would the standard fact, that, if P is a nontrivial partial order in M,
G ¢ M, be translated in the ill-founded context, “up to isomorphism”?

To answer these and other natural questions once and for all, we develop in
this paper the machinery of forcing for arbitrary models of ZFC. Many of the
differences from the transitive case are only minor modifications of the usual
results. There are some more significant variations, however, that stem from
the fact that, in the ill-founded context, it is no longer possible to define the
forcing extension as a transitive collapse. This means that elements of the forc-
ing extension end up being equivalence classes of names, and as a result, many
convenient methods of proof become unavailable. This fact most significantly
affects the proofs of the Minimality Theorem, just discussed, and the Two-
Step Iteration Theorem (which asserts that a two-step iteration is equivalent
to a certain one-step forcing). Our new statement and proof of the Minimality
Theorem makes use of the fact that even a non-wellfounded forcing extension
“believes” itself to be obtained by a collection of coherent transitive collapsing
functions; this lets us use the standard argument as a guideline, though more
bookkeeping is required. Verification that (Mg)n is canonically isomorphic
to Mggh in the Two-Step Iteration Theorem turns out to be more difficul,
again because collapsing functions are not available here. In this case, a careful
examination of names is required to obtain the result.

The paper is organized as follows: In Section 1, we review basic facts about
partial orders, Boolean algebras, and models of set theory that have a possibly
non-wellfounded membership relation. In Section 2, we review the necessary
results on Boolean-valued models. In Section 3, we develop the analogues to
the usual theorems for one-step forcing and in Section 4, for two-step itera-
tions. Finally in Section §, we make some remarks about general iterations;
as we will see, little work beyond that of Section 4 is needed to establish the
expected results for general iterations.

This paper is not the first to discuss the forcing machinery for arbitrary
models of set theory; in {21} forcing is introduced in the more general context
of semisets. However, the work in {21} was developed before the modern ap-
proach to forcing had been standardized, and model theorists might find this
approach inconvenient and impractical. The present paper has the advantage
of paralleling the familiar approaches to forcing found in {15} and {19} and may
therefore be more suitable as a ready reference.

Another related area, which we do not pursue here, is the relationship be-
tween the forcing methodology and nonstandard universes, in the sense of non-
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standard mathematics. Nonstandard mathematics is the attempt to incorpo-
rate the objects and tools of nonstandard analysis into a ZFC-like foundation
for mathematics. The work in {9} and {16} survey the developments in this
area of research. Typically, a nonstandard set theory postulates three types of
objects: standard sets, internal sets, and external sets. Standard sets are meant
to correspond to the usual sets of mathematical concern. The class of internal
sets represents a (nonstandard) expanded universe consisting of the “ideal” el-
ements of standard sets. The external sets are “everything else”. Typically, the
applications of nonstandard mathematics exploit the relationship between the
standard and internal sets; a desirable goal is to formalize the techniques for
studying this relationship in the surrounding universe. One of the most suc-
cessful theories in this direction, developed in the work of Kanovei and Reeken
in {17, 181} is Hrbacek Set Theory (HST). HST is rich enough to formulate nat-
ural questions about the class S of standard sets, the class I of internal sets,
and their relationship. An important example is (roughly stated) the question
of whether elementarily equivalent nonstandard extensions are always isomor-
phic (a more precise statement of this is known as the Isomorphism Property
or IP). The authors of {17} show that IP is not decidable from HST, and they
develop a version of forcing over models of HST in order to prove half of this
undecidability. The forcing methodology developed for this purpose overlaps
to some extent the work we have done here, though in {17], the aim is to es-
tablish consistency results rather than to give a full treatment of the topic of
forcing in this new context. However, as the referee pointed out to the author,
the forcing of {17} generalizes forcing in the nonstandard direction further than
we do here: The models we consider here, though possibly non-wellfounded,
still satisfy the Axiom of Regularity; they are internally standard. By contrast,
models of HST are not internally standard; forcing in this context could be
described as (in the words of the referee) “essentially nonstandard”.

The work in this paper was originally developed as a foundation for another
paper in which forcing machinery is developed for the language {€, j}, where j
is a unary function symbol intended to represent an elementary embedding of
the universe; see [§l. At present, {5} and {4]} are the main applications so far of
the material presented here.

I PRELIMINARIES: NON-WELLFOUNDED MODELS, PARTIAL
ORDERS, AND BOOLEAN ALGEBRAS

Let M = (M, E) be a (possibly non-wellfounded) model of the language {€}—in
particular, we assume M is a model of ZFC. The symbol ‘€’ will be used both
for the formal symbol of the language and for the “real” membership relation
in the surrounding universe V.

We often need to consider the syntax of the language {€} of set theory as
being formalized within set theory, and for this purpose, we follow {1o}. In
particular, we represent in ZFC e-formulas ¢ by constant terms ¢ 1 (added to
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ZFC by definitional extension), having the property that each is an element of
V,, (see [10, pp. 90-91]). We also use, without special mention, simple formulas
that describe properties of these sets. One such formula of particular impor-
tance is Sat(u, M, b) which asserts that u encodes the e-formula ¢(x1,...,%xm)
and (M,E(M)) E ¢(b(1),...,b(m)), where b is a function defined on w that
specifies set parameters. As in [1o], Sat(u, M, b) is a AleC formula.

Our arguments often require several models with different membership re-
lations. To help avoid confusion about where arguments are taking place at
various stages of a proof, we adopt the convention of indicating that (M, E)
satisfies an atomic formula x € y at (a, b) by writing

(M,E) = aEb

rather than (M,E) = a € b. (Formally, E can be thought of as the binary
(M, E)-class defined by (M, E) = E(a,b) iff (M,E) = aeb))
For any X € M, we let

Xe={xeM:MExEX],

Xgz ={Yg:YeMand M = YEX].

The set X is the extension of X.
We shall assume at the outset that the standard natural numbers (in V)
form a (possibly proper) initial segment of the natural numbers of M. Indeed,

we will assume from now on that
(Vw) " C (Vw)JEV[ and Vx € (Vw)ny € (Vw)JEV[ [(MEYEX) =y €ex].

Using extensions, we can obtain external representatives of the ordered
pairs and functions living in M. First we define a pairing function op = op, :
M? — M:

op(x,y) = unique u € M such that M = u = (x,y). (1.1)

For any X,Y,t € M for which M = “t: X — Y is a function”, we define a
function graph(t) = graph,(t) having domain Xg by

Vx,y € M (graph(t)(x) =y <= M Et(x) =y).

For any n € w and any R € M for which M = “R is an n-ary relation”, we
define an n-ary relation rel(R) = rely(R) as follows:

V(X1,...,Xn) € M™ [()q,...,xn) crel(R) —

Mlz(xh...,xn)ER}. (r.2)

PROPOSITION I Suppose M = (M, E) is a model of ZFC.

() For all x,y € M, (x,u) = op(x,Y)E2.
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() If M = “R Zs a unary relation’, then rel(R) = Rg.
(3) Suppose M = “t : X — Y is a function”.

(a) graph(t) 7s one-one if and only if M |= “t is one-one”.
(b) graph(t) zs onto if and only if M = “t is onto”.
(©) Suppose n, k € w and

ME X = (X,R,fyandy = (Y,S, g) are first-order structures of the same
type, R and S are n-ary, and t : X — Y is structure-preserving.

Then X' = (Xg,rel(R), graph(f)) and Y’ = (Yg,rel(S), graph(g)) are
first-order structures of the same type and graph(t) : X' — Y’ is structure-
preserving.

Proof. The proofs of (2) and (3) are easy. For (1), let u = op(x,y). If z € M and
M zEu, then M = [z = {x}Vz ={x,y}]. Therefore, there are v, w € M such
that

@MEvV={Aw={x1y}
(b) ve = {x} and we = {x,y}
©MEu={v,w},and
(d v ={v,w}.

We have

Uz = {zp:ze€Mand M E zEu}
= {ve,Wg}

{x {x, ul)

= (x,y).

Typically, we will be interested in forcing with a partial order, and to do
so we will embed it into its Boolean algebra completion. All partial orders
(P, <p), denoted simply by P usually, will be assumed to have a largest element,
denoted 1p or simply 1. A Boolean algebra B can be specified by providing
an order relation < on B that makes B a complemented distributive lattice, or
by providing operations V,/A\,* and constants 0, 1 satisfying the usual axioms
of a Boolean algebra (see {3}, Section 4]). We also define auxiliary operations
—, e, — by

b—c=b*Vec
beoc=b—-cAc—b

b—c=b A c*.
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A complete Boolean algebra is a Boolean algebra B for which \/ X exists for
every X C B.

If P and Q are partial orders, a function i : P — Q is called a complete
embedding if the following hold (see {19, VII}:

@ Vp1,p2 € P (p1 < p2 = ilp1) <ilp2))

(b) Vp1,p2 € P (p1 L p2 <= ilp1) Lilp2))

(©)Vq € Q3p € P¥r € P (r < p = (i(r) and q are compatible in Q)).
Amape:P — Qs called a dense embedding if the following hold:

@ Vp1,p2 € P (p1 <p2 = e(p1) < e(p2))

(b) Vp1,p2 € P (p1 Lp2 = ilp1) Li(p2))

(c) i”P is dense in Q.

Suppose B, C are complete Boolean algebras and i : B — C is a homomor-
phism. Then i is said to be complete if, for all X C B, i(\/ X) = V(i”X). In
particular, if B is a subalgebra of C, then B is a complete subalgebra if the in-
clusion map is a complete homomorphism. Typically, if i : B — C is a one-one
complete homomorphism, we will identify B with its image under i (which is a
complete subalgebra of C).

The next theorem lists several standard results about partial orders and
Boolean algebras that we will need; proofs can be found in {13, Section 171, 3],
or [t9, VII].

PROPOSITION 2

(v) Every partial order P has a unique (up to isomorphism) Boolean algebra completion.
That is, for each P, there exist a complete Boolean algebra ro(P) (the regular open
algebra of P), unique up to isomorphism, and a dense embedding e : P — 1o(P) \

{0}

(2) If B and C are complete Boolean algebras and i : B — C is a function, then iis a
complete injective homormorphism if and only if i | B\ {0}: B\ {0} — C\ {0}z
complete in the sense of partial orders.

(3) Suppose P, Q are partial orders and B = ro(P) and C = ro(Q). Ifi: P — Qs
a complete embedding of partial orders and ep : P — B, eq : Q — C are dense
embeddings, then i lifts to a complete injective homomorphismi: B — C.

(4) (Rasiowa-Sikorski) Suppose B is a Boolean algebra, a € B, a # 0, and {Xo,
X1,..s Xn, ...} i a countable family of subsets of B such that for each n, there is
b € Bsuch that o = \/ Xy. Then there is an ultrafilter U C B such that a € U
and for each n,

\/ Xn € Wimplies X N U # 0. (1.3)
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If e is a dense embedding that witnesses the fact that B = ro(P), we will
often write e : P — B for convenience, rather than e: P — B\ {0}.

Suppose M = (M, E) is a model of ZFC and B € M is such that M =
“B is a Boolean algebra”. It is easy to verify that Bg, with the ordering b < c iff
M = b < ¢, is a Boolean algebra (note the external < is actually rel(<)). We say
that B is M-complete if, for each X € M, if M = X C B, then there is b € Bg
such that b = A Xg (where the meet is taken in Bg).

The next proposition says that the extension of a complete Boolean algebra
in M is always an M-complete Boolean algebra under the natural ordering.

PROPOSITION 3 Suppose M = (M, E) is a model of ZFC and in M B is a complete
Boolean algebra. Then (B, <) is an M-complete Boolean algebra.

Proof. Suppose X € M and M = X C B. Let b € Bg be unique such that
M E= b = AX. Clearly, for each x € Xg, M =b < x, and so b < x; thus b
is a lower bound of X. Suppose ¢ € B and, for each x € Xg, ¢ < x. Then
M E Vx € X(c < x), whence M E ¢ < b. Hence ¢ < b, and we have shown
that b = A X. O

Likewise, one can show that each of the Xg as in Proposition 3 has a join in
Be. For each X C Bg let X* = {x* : x € X}. It is easy to show that if Y C B¢ has
a join and a meet, so does Y*.

The obvious similarity between the structures (Bg, <) and (B, <)M derives
from the fact that these structures actually have the same first-order proper-
ties. This in turn follows from a more general observation that will be useful:
Suppose n, k € w and

ME “X=(X,R,f)is a first-order structure,
R is an n-ary relation, and f is a k-ary function”.

Let X' = (Xg,rel(R), graph(f)). Let &(x1,...,xm) be a first-order formula in
the language of X'. Then for all b € M for which

ME “b:rank(r¢d1) — Xis a function”,

we have
X' E ¢lbo,...,bm_1] <= M E Sat(1d1,X,b), (1.4)

where, for each i, M = b; = b(i). The proof is by a straightforward induction
on the complexity of ¢ and makes use of the fact that M end-extends the real
V. (This convenient observation was pointed out to me by D. Hatch.)

Some easily proven consequences of (1.4) are listed in the next proposition:

PROPOSITION 4

(D) Suppose M = “P is a partial order”. Then M = “P is separative” if and only if Pe is
separative.
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(2) Suppose M = “P is a partial order”. Then for all D € M, M = “D is a dense subset
of P”if and only if D is a dense subset of Pe. The same bholds if “dense subset of”
is replaced by “(maximal) antichain in”.

(3) Suppose M |= “B is a Boolean algebra and b, c EB”. Then M {=b = c* if and only
if, in Bg, b = c*. Analogous statements hold for the operations /\,\ and for the
constants 0, 1.

(4) Suppose M &= “B is @ Boolean algebra and X,Y are subsets of B”. Then M = Y =
X* if and only if Ye = X§.

(5) Suppose that in M, P is a partial order, B = 10(P), and e : P — B is a function.
Then M |= “e is a dense embedding” if and only if graph(e) : Pe — Bg is a dense
embedding.

Proof- We outline the proof of (5): Consider in M the first-order structure
(B,/\,V,%,0,1,P,B,e), where e is treated as a binary relation. Clearly, the
property of being a dense embedding is first-order relative to this structure,
and so (1.4) applies. O

2 BOOLEAN-VALUED MODELS

Given amodel M = (M, E) of ZFC and a B € M such that M = “B is a complete
Boolean algebra”, we build the Boolean valued model M in M in the usual way:
MB = Ugecon ME, where M§ =0, MB_, is the set of all functions f € M such
that dom f C M2 and ran f C B; and M% = J,_, ME, when A is a limit. In I\,
we also define sets Mg , v an ordinal in M, as follows:

MEMg, =MBENV,. (2.1)

As usual, define a first-order language LB = L0B consisting of € together
with a constant for each member of (MB)¢. Formulas of LB are coded in M
so that the formulas form a definable class in M. We refer to the formulas of
LB as B-formulas. As usual, there is a Boolean truth value map [-] = [[~]]3§{,
depending on B and M and defined within M by recursion on a well-founded
relation, that assigns a value in B to each B-formula. For completeness, we give
this definition here.

[oels = VtEdom(T)(T(t)/\[G:t]}B)
[o=rls = /\sEdom(o)(G(S) —[se T]]B)

A At dom (T)(T(t) —lte G]]B)
WAdls = s Aldls

[Vl = ([Wlg)"
[xbX)s = Viemeb(t)s.

In the definition, o and T are B-names and 1, ¢ are B-sentences. Formally,
[Wlg is defined for atomic 1 within M by recursion on pairs of name-ranks
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(see {151). Then the definition proceeds, by induction in V, on the complexity
of formulas. The definition up to any finite stage is formalizable in M, but, by
Tarski’s result on undefinability of truth, there is no class function F defined
in M such that F(r1) = ]} for every B-sentence 1.

For b € Bg, we express the fact that a formula ¢(x) at T has Boolean value b
in M with the notation M = [¢(1)]s = b or [$(1)]}' = b; when the underlying
Boolean algebra is clear from the context, we shall suppress the subscript “B”
in this notation. In M, we say MB = ¢ if [p]g = 1. Still in M, for each x € M,
we let x = {(U,1) : y € x} € MB; % is called the canonical name for x. Let
u=mug € (MB)E be defined by letting domu = {b:b € B}and defining
u(b) = b forall b € B. uis called the canonical name for a generic ultrafilter
in B. (We will define generic ultrafilter for the present context in the next
subsection where we deal with two-valued models.) The usual forcing relation
I is defined in M by

bl ¢ iffb < [d]p.

Next we state two theorems that outline useful properties of MB. The first of
these is a result about B-names; proofs of parts (1)—(4), (6) can be found in {z].
We will sketch a proof of part (5) using Theorem in the next subsection.

THEOREM § Suppose M = (M, t) = ZFC and, in M, B is a complete Boolean algebra.

(1) (Names of Unions) In M: Suppose o E ME, Define Tt MB by
dom T = U{domv :vEdom o}

and
T(t) = [Ox € o (t € x)].
Then [t=Jols =1.

(2) (Names of Subsets) In M: Suppose o E MB. Then for every T E MB there is
T2 EMB such that dom s =dom ocand[t1 Co — 11 =2l = 1.

(3) (Names Of Power Sets) In M: Suppose o E MB. Let Py (0) be the B-name de-
Sfined as follows: dom p (o) = dom (o) andforallt E dom py (o), pg(0)(t) =
[t € o]. Then [pg(o) =P(o)]s =1.

(4) Mixing Lemma) In M: Suppose A C B is an antichain, and we have B-names
{0a : aE A Then there is o E M such that for all cE A, a < [0 = 04ls.

(5) (Unmixing Lemma) In M: Suppose o, E MB. Then there is an antichain A of
elements of B below [0 € nlg such that \| A = [0 € 7|y and for each a E A
there is 04 E dom 7t such that a < [0 = 04]B.

(6) In M, MB s full; that is, for each B-formula $(x,x1, ..., xn) andallt1,. .., T €
(MB), thereis T € (MP) _ such that

M ': IId)(T)T])'")TTl)]] = IIHXCI)(X)T]»---)TTI)]]-
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The name pg(0o) in part (3) will be called the canonical B-name for the
power set of 0. Part (5) asserts that every Boolean-valued element o of a B-
name 77 is a mixture, in the sense of (4), of the elements of the domain of 7 by
a maximal antichain below [o € n]g.

In working with names, it is handy to have a canonical subcollection of
names that are relatively small in size and low in rank. For this purpose, we
define canonical names for ranks Vy, give bounds on the sizes and ranks of
these names, and use these tools to describe a relationship, definable in M,
between the rank of a set in a forcing extension and the rank of one of its well-
chosen names. The bounds we describe below are convenient for this paper
but are not optimal; see {20l and {13} for sharper results in the case of partial-
order-based names.

We begin by recursively defining in M a class sequence (£, : « € ON) of
names for the ranks Vi Let o = 0. For the inductive step, given Iy,

dom iy, = Bdom(fa),
1.~'oc+1 (t) = [[tgi'oc]]B-
For A a limit:
domf, = [J{domty:a <A}
() = Vaalt € talp.

Recall that for an infinite cardinal k, Ju (k) is defined recursively as follows:
To(k) = k3 Tog1 (k) = 23=(x) Ty (k) = Ug<r Ja(k) for limit A. Also, for any
ordinals «, 3, we define reg(3, «) to be the least regular cardinal > max{e, }.

THEOREM 6 Suppose M = (M, E) is a model of ZFC and, in M, B is a complete
Boolean algebra.

(MM EVa € ON [ = Volp = 1.
(@) M= Vo € ON [fo| < Ju([B).

(3) In M: Whenever o is a B-name with domain dom t, then o € V, where p =
reg(rank(B), ).

(4) M = Voo < NEON [(Aastrong limit and BEV)) => £ EV,\].

(5) In M If \ is a strong limit, BE Vi, and 0 E MB, then there is TE My  such that
[ceVy —o=1]g=1.

(6) There is an M-class function T = Tg with M = T : ON — ON having the
following property in M:

VaEONVGEM® ([o€ Vulg =1 =

2.2
ElTEMB,T(fx) [[O':T]]B:1). ( )

In particular, if T is defined in M by M |= T (o) = reg(rankB, ), then T satisfies
(2.2).
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Proof. The proof of (1) is by induction in M on the ordinals and uses Theo-
rem [5[3) at successor stages. For the limit stage, working in M, notice that if A
is a limit, we can let o be the name having domain {f : @ < A} and constant
value 1. Then for all t E o,

() =Vaaalt € falp
=[x €eotex]p.

It follows from Theorem [5{1) and the induction hypothesis that
[ir = JFa e <A} = JVa:x <A =Valg = 1.

The proofs of (2) and (4) are also straightforward inductions (in M). To
prove (3), we proceed by induction, in M, on the ordinals. The basis step is
trivial. For the successor step, suppose dom 0 = dom #47. Then dom o =
pdom (Fa) et p = reg(rank(B), ). Clearly p = reg(rank(B),x + 1). By in-
duction hypothesis, we have easily that {B,dom £, #«} € V,. It follows easily
that o € V,, as required. For the limit step, suppose A is a limit ordinal and
dom ¢ = dom i) = (J{dom £« : « < A}. For each & < A, let B = rank(f). By
the induction hypothesis, f« < reg(rankB, ). Let = sup{f« : &« < A}. Then
Ugerdom iy C Vi, Let p = reg(rankB,A). Since A < p and each B« < p, by
regularity of p we have 3 < p. Thus dom ) € V,,. Since B € V,,, it follows that
o€V,

To prove (5), suppose M = A is a strong limit, BE Vy, and 0 E MP. Arguing
in M, since sat(B) < A, there is o« < A such that [0 € Va]g < [0 C V4lg. Now
by Theorem [5{2), we obtain a B-name 7 such that

domt=domr, and [oC V4l < [o="1lp.

The result follows.

For (6), we define T by M = T(«) = reg(rankB, «). Suppose « and o are
such that [o € V(X]]%4 = 1. Using Theorem 2), we obtain in M a T having
domain dom f4 such that [o = T]} = 1. By 3), M = TE Vy (). O

The next theorem is a list of results about Boolean-valued set theory that
we will need in our exposition; again, proofs can be found in {Be}l.

THEOREM 7 Suppose M = (M, E) = ZFC and, in M, B is a complete Boolean algebra.
(1) For each axiom \p of ZFC, [YIF = 1.

() For each t € (M®),

rew} =\ (cAlr=¢)]y =V (c Alr=2¢h).

cEB ceEBg

Foreachb € B,
ME[b€eulg =b.
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(3) For eachx € M and T € (MB)E,

rex = (\/ k=tls)" = \/ =0

yEx YEXE
(4) Foreachx,y e M
xEy <« (MP I:ieg)m
x=y — MBEex=y)"
(5) For any X formula $(x1,...,xn) andany y1,...,yn € M

ME bur,...,un) <= (M®EoW,...,un)"

6) Forallt € (MB)E,

[[Tz'sanordz'nal]]M:< \/ [[T:&]])M: \/ [t = &It

aEON ac ONN

(7) Suppose that in M, C is a complete Boolean algebra and B is a complete subalgebra
of C. Then for any Lo formula $(x1,...,xn) andany t1, ..., € (MPB)_,

[(tr, ., )IE = [d(Tr, .., )T

We remark here that the basic results concerning A-cc forcing and A-closed
forcing hold in the present context of non-wellfounded ground models because
they hold in the Boolean-valued model — namely; A-cc forcing preserves car-
dinals and cofinalities > A and A-closed forcing adds no new functions on sets
of size < A. After stating relevant definitions, we record these results below in
the language of Boolean-valued models; see {2} and {15} for proofs.

Still working in a model (M, E) of ZFC, suppose A is an infinite cardi-
nal. Recall that a partially ordered set P is < A-Baire if the intersection of
less than A open dense subsets of P is dense. If P is < A-Baire, so is ro(P) \
{0}. Moreover, we say that a complete Boolean algebra B is < A-Baire iff
B \ {0} is < A-Baire in the sense of partial orders. If x,y € M and M
“B is < A-Baire and |x| < A and F = y*”, then [J* = ]E]]%/[ =1.

Still in M recall that if P has the A-cc then B = ro(P) does too, and in either
case, whenever 6 > A is a cardinal of cofinality y, then [6 is a cardinal and
cf(8) = ylg = 1. We record these facts:

PROPOSITION 8 Suppose M = (M, E) is a model of ZFC and, in M, P is a partial
order and B = 10(P), and \ is an infinite cardinall.

Paul Carozza, “Forcing with Non-wellfounded Models”, Australasian Journal of Logic (5) 2007, 22-2?


http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/

http://www.philosophy.unimelb.edu.au/ajl/2007 32

(@ If, in M, P is N-closed (or even < N-Baire), then for all x,y,F € M with
ME x| < Nand F =y*,

we have
y* = F]]Jg[ =1.

(2) Suppose in NUP is A-cc, © > N is a cardinal, and cf(0) = y. Then

[0 is @ cardinal and cf(0) = VI3 = 1. O

‘We shall write sat(P) (or sat(B)) for the least k such that P (or B) has the k-cc.

We conclude this subsection with some facts about the canonical name for
generic filters in the context of Boolean-valued models. (Again, we postpone
the actual definition of a generic filter to the next subsection.) In M, suppose
P is a partial order, B = ro(P), and e : P — B is a dense embedding. We define
g=8p. € (MB)E as follows: Let dom g = {p : p € P} and define g(p) = e(p).
The name g is called the canonical name for a generic filter in P with respect
to e. The following theorem is an easy corollary to Theorem 7}

THEOREM 9 Suppose M = (M, E) = ZFC and, in M, P is a partial order; B = ro(P),
and e : P — B is a dense embedding.

(1) For each t € MB,

regl =\ (e Alr=pls)]" = \/ (e A It =pI).

pEP pEPE

(2) For eachp € P, .
[p < gl3' = (e(p)) ™
(3) Foreachp € P,
[pecge ép) culd =1.

3 FORCING OVER ARBITRARY MODELS

The properties given in the Theorem [7] are internal to M; consistency results
in the context of Boolean-valued models take the form

MES=MBES+o,

where S is an extension of ZFC. Here, however, we are interested in casting
our results in terms of two-valued models. To obtain such a model from MB,
we collapse MB with an ultrafilter U that is “contained in” B. When M is tran-
sitive, we can use an ultrafilter U C B, but when M is arbitrary, we need to take
U C Be. Even in the transitive case, MB /U is a poor substitute for the usual
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generic extension M[G], unless U is endowed with genericity. In the transitive
case, we can define U to be generic if A X € U whenever X € M and X C U, but
this definition has to be modified for arbitrary M. In the transitive case, using
a generic U gives us that MB /U is well-founded with transitive collapse pre-
cisely equal to M[U]. For arbitrary M, using a generic U gives us a new model
Mu that closely resembles its transitive analogue; Lemma|i4]and Theorems
and [16|list the relevant properties. Before proving these results, we establish a
few additional preliminaries:

DEFINITION I Suppose M = (M, E) is a model of ZFC and, in M, B is a com-
plete Boolean algebra.

(1) (S-Genericity) Suppose M =S C P(B). We will call an ultrafilter U C Bg
S-generic over M if, whenever X € M, X € Sg, and Xg C U, we have
/\ Xg € U.

(2) (Genericity) An ultrafilter U C Bg is B-generic over M if U is (P(B))M—
generic over M.

(3) (Internal Genericity) Suppose I',S € M and
M = “T C B is an ultrafilter and S C P(B)”.

Then T is internally S-generic (for B) in M if

MEVXeS(XCT = AXET). 3.1

(4) (Genericity in a Model) Suppose I''S € M. Then we say M = “T" is S-
generic in B” it M = “T" C B is an ultrafilter and S C P(B)” and (3.1) holds.

Parts (3) and (4) are different ways of saying the same thing; indeed, I" is
internally S-generic in M if and only if M = “T is S-generic in B”. Parts (3) and
(4) are different from part (1) because we may be dealing with non-wellfounded
models. An example of internal genericity is wy: In M let P = P(B). Then uy
is internally P-generic in My. The next theorem is the analogue of the usual
result that generics over countable transitive models always exist:

THEOREM 10 Suppose M = (M, E) is a countable model of ZFC and M = “B is
a complete Boolean algebra”. Then, for each nonzero b € By, there is an ultrafilter
Uy, C B such that b € Uy, and Uy, is B-generic over M.

Proof Let Pp ={X € M: M E X C B} and let b € Bg. Since M is countable,
s0is P = {Xg : X € Pnm} and we can write P = {X‘(:_o),X(E]), e ,X(En], ...}.. Since B
is M-complete, each X[En) has a join and a meet in Bg. By the Rasiowa-Sikorski
Theorem applied to B and the family P, we obtain an ultrafilter U, C Bg
such that b € Uy and (1.3) holds. Assume that for some n, X(En) C Uy, but
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/\Xl(:_n) ¢ Uy. Then \/(X(En))* € Uyp. By (1.3), some x* € (X(En))* must be in
Uyp,. But this is impossible since x is also in Uy. The result follows. O

As promised in the last subsection, we can use Theorem 10| to prove The-
orem [5[5): Work in M: Let b = [0 € 7] and let B, = {c € B : ¢ < b}. Let
={(1,¢) Edom 7t x By, : ¢ < [t = o]}. Let K be a subset of K that is max1ma1
w1th respect to the property that for all (11, ¢1), (T2,¢2) EKp, ¢c1 Aca =0. Let
= {cEBp : ITEdom 7(c, ) EKp}. Clearly, A is an antichain below b. We
prove that \/ A = b; it suffices to show that A is a maximal antichain below b.
Suppose d E By, is such that d A c = 0 for all cEA. Let U be B-generic over
M with ¢ € U. Since, in M, ¢ < [o € 7], there must be, by the definition
of Boolean-valued membership and genericity, a 7 € M with M = 7 Edom 7
and [0 = UM EU. Thus, in M, we can find d’ below both d and [o = T']™.
Now (7', d’) EX satisfies the property that for any (t,c) EKp, d Ac = 0, con-
tradicting the maximality property of Ko. Therefore, as claimed, \/ A = b.
To complete the proof, arguing in M, for each aEA, we let 04 be such that
(0q, a) EKp; these o have the required property:.

A familiar equivalent form of genericity is given in the next proposition.
The proof is an easy variant of the usual one in the context of transitive models
(see, for instance, [15, 17.4]).

PROPOSITION I1 Suppose M = (M, E) is a model of ZFC, B is, in M, a complete
Boolean algebra, and \l C By is an ultrafilter. Then \ is B-generic over N if and only zf
foreach D € M, Dg N'U # () whenever M \= “D is dense in B \ {0}”.

We proceed to a description of the model My = (MP) /U, where U is
some B-generic ultrafiltef] over M. Given such a U, define an equivalence rela-
tion ~; on (MB)E by

T ~u T2 iff [[T] = ’Cz]]%/[ e u.

We denote by Ty = 1| the ~-equivalence class containing T. We let My =
{tu:te (MB)E}. Define a membership relation Ey, on My by

ouEuty iff [o € T]]%/[ e .
As usual, Ey respects equivalence classes. We have the following:
THEOREM 12 Suppose G(x1,...,xn) isaformulaandty,. .., tn € MB. Then

MU ': d)((T] )U> ceey (TT’L)U) Zﬂ‘[d)(’f] yoo. aTTl)]]jg[ e U
In particular, My, = ZFC.

"Though we do not pursue this direction here, interesting things can be said about My for
an arbitrary (not necessarily generic) ultrafilter. See for example {ixl.

Paul Carozza, “Forcing with Non-wellfounded Models”, Australasian Journal of Logic (5) 2007, 22-2?


http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/

http://www.philosophy.unimelb.edu.au/ajl/2007 35

Proof. The last part follows from the first. The proof of the first part is by
induction on the complexity of ¢. The only nontrivial case is the existen-
tial quantifier case where fullness of M® is used. Suppose d(x1,...,xn) =
IxP(x,%1,...,%n). Then for any 11, ...,Th € MB,

Mu Eo((t1)u,-- -, (hu) <= Fte MP My =¥ (tu, (tT1)u, - -+, (Tn)u)
= IreMB (1, T1,..., )M eU
= [IxP(x,T1,..., )M elU
= [¢(t1,..., )M el O

The analogues to the usual Forcing Theorems now follow as a corollary:

THEOREM 13 (FORCING THEOREMS) Let\p be a sentence of the B-language for M.

(1) Suppose b € Be. Then M |= b |- if and only if, for every U that contains o and is
B-generic over M, we have My = 1.

(2) My =\ if and only if there is b € U such that M = b |- 1.

Proof. For (2), both directions follow immediately from Theorem For (1),
if M = b IF 1y and b € U, where U is B-generic over M, then My = { by
Theorem [12] For the converse, if M (b |- 1, there is ¢ € Bg, ¢ < b such that
c # 0and c A[p] = 0. Then M = ¢ < []g. Let U be B-generic over M
such that ¢ € U. But now b € U and, by Theoremagain, My E —, and this
suffices to complete the proof. O

Next, we describe properties of the natural embedding of M into My,.
Since we are working with possibly non-wellfounded models, it will be help-
ful to review the usual mappings that are used when M is transitive, and then
indicate the difference in the present context. When forcing over a countable
transitive ground model M with a generic ultrafilter U in B, one has:

T MB/U ™ MU

M — M8
and m o1, is often denoted iy. In the present context, the map m, which
is the Mostowski collapsing function, is not generally an isomorphism since
Ey is typically non-wellfounded, but all the other maps are defined and used
in the usual way. (Technically, the definition of ny must be changed to ny :
(MB)y — (MPB) /U, and the check function is to be thought of as defined
within M.) Without the transitive collapsing function, it will not generally
be true that M is a subset of the forcing extension. We therefore define the
insertion map that gives the canonical isomorphism: sy =mn, o " ; in other
words, for all x € M,

Su(X) = )v(u.

The next theorem lists the properties of sy;. We need some definitions.
We follow {2} in defining an element y € My, to be a standard ordinal of My
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if My E “y is an ordinal” and for some & € M for which M & “« is an ordinal”
we have My =y = &y. Also, given models (A, E) and (B, F) of {€} with A C B,
we shall say that A is transitive in B if for all x € A,y € B, ify Fx, then we have
y € A and y Ex. Given models € = (C,E) and D = (D, F) of {€} and a function
f: C — D, we will say that f is a transitive embedding, and that C is transitively
embedded in D by f, if f : € — (f”C,F) is an (E, F)-isomorphism and f”C is
transitive in D. (A warning is in order here. Typically, in this paper, when we
speak of a model A being a transitive subset of another model B, the intended
meaning will be as in the above definition, and not in the more familiar sense
that A is in fact a transitive set that is a subset of B.)

LEMMA 14 Suppose M = (M, E) 7s a model of ZFC. Suppose that, in M, B is a com-
plete Boolean algebra, and that L is an ultrafilter in By, which is B-generic over M.

(1) The map sy : M — My #s a transitive embedding; that is,

(@ su : M — s{{Msan (E, Ey)-isomorphism

(b) s{{M C My s transitive in My.

(2) M and My have the “same” ordinals. That is, for every « € M, if o is an ordinal
in M, then &y 7s a standard ordinal of My, and every ordinal of My, s standard.

(3) Suppose M = “C is a complete Boolean algebra” and W is C-generic over M. Then
the map € : s{\M — s{, M defined by L(Xu) = Xw @5 an isomorphism satisfying

SWZQOSu.
M
v N\
4 /

!
syM

1
suM

Proof of (1). If x # y are elements of M, then by Theorem 4), x #yM=1¢
U. By Theorem My = %u # Yu. Thus, sy is one-one. Replacing = with
appropriate forms of the membership relation in the above argument leads to
the conclusion that sy is in fact an isomorphism.

To see that M’ = s””M is transitive in My, suppose Wy € M’ and My E
zy Eu wu; we show that zyy € M’ by showing that, for some y € M, [z =
UM € U. Now My E zy Euwu implies [z € WM e U. By Theorem 3),

zewl™ = \/ lz=y™.
YEWE

By genericity of U, there is y € wg such that [z = ylM e U, as required. This
completes the proof of (). O

Proof of (2). To see that each ordinal in M is mapped to a standard ordinal,
suppose M = “« is an ordinal”. By Theorem 5), [“& is an ordinal’]M =1 € U.
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By Theorem My E “&y is an ordinal”. Therefore « is mapped to a standard
ordinal. Conversely, to see that every ordinal of My, is standard, we show that
each ordinal Ty in My is equivalent to a standard ordinal &y:

My E “ty is an ordinal” <= [“Tis an ordinal”]™ € U
=V, cONM [t = &M (by Theorem 6))
+—= Ja € ON QA [t=&™Meu (by genericity)
— Jx e ONP 1y = &u (by Theorem 12)

as required. O

Proof of (3). Immediate. O

Notice that by transitivity, as in (1), for any x € M, the members of sy (x)
are of the form sy (y) for y € M. Intuitively, this says that sy (x) = s{[(x), but
this notation is incorrect. The intuition can be made precise with the formula:

"

[su(x)]e, = sy(xe)- (3.2)

By (2), the ordinals of My must be standard. Therefore, we will use the
same notation — Greek letters «, 3, etc. — to denote the ordinals in both M
and My. This identification makes sy; the identity on ON M. that is, for all
x € ON E,

Su(O() = .

Let w" denote the set of standard integers and (V,,)V the set of standard
hereditarily finite sets. Our convention of identifying the standard elements of
wM with the elements of w, and the standard elements of (V)™ with the
elements of (V,,)V leads to the following further identification:

Vx € (V)M su(x) = x.

We also wish to identify B with its image under sy. It is easy to see that sy
induces the isomorphism

(Bg, <) = ([su(B)]g,, rely, (su(<)));

in other words, B and its image are isomorphic under sy. We therefore make
the identification:
forall b € Bg, s(b) =b.

This identification implies that
sﬁu =U.

It is important for later work not to identify M with s;; M, though in some
circumstances the identification is warranted. The problem is that there will
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be times when we need to know whether one forcing extension is truly a sub-
set of another; to make use of this identification in such circumstances would
be incorrect. However, for arguments that are strictly “up to isomorphism”
(and so do not, for example, make claims about one model being a subset of
another), the identification is justified and will be used sometimes for the sake

of readability.

THEOREM 15 Suppose M = (M, E) is a model of ZFC. Suppose M = “B is a complete
Boolean algebra” and \ is an ultrafilter in Bg that is B-generic over M. Then the model
My = (Mu, Eu) bas the following properties:

(D) If M is countable, then My is also countable.

(2 (au)e, = U @bhere ay is the U-equivalence class containing w and (wy ), 45 its
extension).

(3) Suppose N = (N, F) is another model of ZFC and M is transitive subset of N that
is definable with parameters in N. Suppose that for some T € N, T = U. Then
there is a one-one map f : My — N satisfying, for all x,y € My,

xEuy < f(x)Ff(y).

Proof of (1). Assume M is countable. Note that (M®)_ is a subset of M, so
(MP); is countable. The map ny : (MP). — My : T — Ty is onto; therefore
My, is also countable. g

Proof of (2). We first observe that, by genericity and Theorem 2), forall T €
MEB,
[treueU <= 3beBe (bA[r=b]")ecU
~JbeUfr=bMeU.

Thus (making use of the identification sy | Bg : b +— b),
(au)e, ={Tu € Mu:Mu F tu Euuau}
={tyueMy:[tea™eul
={tueMy:FbelUft=b]Me U}
= {Bu :be U.}
=s{u
=U.

Proof of (3). The Boolean-valued model M® is definable in N; we claim that
N = “T' is B-generic over M” :

Suppose D € M and M = “D is dense in B \ {0}”. By transitivity of M in N,
Dg = Dr. Thus, there is d € M such that d € Dg N U = D N T%. It follows
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that N = dFD NT, as required. Thus, we can define in N the class M = {or :
o FMB}. (To do this properly, we must use Scott’s trick in the definition of the
equivalence classes since, without this restriction, each equivalence class tr
would be a proper class in M.) Now if we define f : My — N by f(ty) = (tr)V,
f is easily seen to have the required properties. O

The result described in (3) above is not optimal since we have required that
M be a class in N. The reason that the usual proof—which does not rely on this
assumption—fails here is that it relies on the existence of the usual collapsing
map from MP to the forcing extension, defined recursively by iy (1) = {iy(o) :
T(0) € U}; when such a map exists (and the models involved are transitive), one
can argue that the range of the restriction of this map to each M2 is included
in N, whence the entire forcing extension lies in N. In the present context,
although we do not have such a collapsing map, once My has been built, My
believes that it is the range of such a collapsing map, or at least of a coherent
collection of set maps that collapse names in the same way. This is true because
if one builds the forcing extension entirely within MB using the canonical name
for a generic ultrafilter, a collapsing map is definable. In the next paragraph,
we develop these ideas, and use them to improve Theorem [153). We shall call
a collection JF of functions coherent if its elements are pairwise compatible
(relative to the usual inclusion relation).

We begin with some facts that are provable in MP. Recall that we may add
a constant symbol V to our forcing language LP that represents the ground
model in the sense that, in M

[teV]g = \/ [t=x]s.

xEV
One shows (see [2]) that, in M, the following statements have B-value 1:

“V is a transitive model of ZFC containing all the ordinals”;
o(“B is a complete Boolean algebra”)v ;
o“u is B-generic over V”.
Defining B-names and the collapsing map within MB, one also proves that
[V[u] is a transitive model of TZFC1, V C V[u],andu € V[ul]g = 1.
Finally, one can show in M that
[x (x € Via))J = 1. (3:3)

Formula (3.3) says that, when the forcing machinery is developed inside MB,
every element of the real forcing extension is realized by a B-valued term de-
fined in MB.
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We can restate Theorem 5) in MB as follows:

[V, X,03z [( (xastrong limi)V AB eV, A o VoA
z € I\V/lgycx) — o=z|lg=1.

In other words, if « is a strong limit in the ground model and o is forced to
be an element of V, there is a name 7 in the V4 of the ground model that is
forced to equal o. It follows that

[Vox ((x a strong limit)V — Vi = Vo [u]) I3 = 1. (.4)
Putting together (3.3) and (3.4), we obtain
[vx 3o (x € Vi [u) Y = 1. G.5)
The consequence of (3.5) and (3.4) after collapsing by U is that we have
Mu F Vx 3o (x € su (VY [ayl), (3-6)
and
M = “ais a strong limit” = My = Vy = su (V) ayl. G.7)

Now we can define our coherent collection of collapsing maps inside My:
For each vy, recursively define i, u, =1, on sy(Mg ) by

iy (su(t)) ={iy(sulo)) : sulo) Eydom sy (1) A sy(t)(sulo)) €ay}. (3.8)

To verify coherence, one shows that

My b= Vo, B (x < p = ia =1ip [ sulMs a)). (.9)

To do this, fix an ordinal § and prove by e-induction in My, that whenever
sul(t)Eusu(Msg,p) then ig(su(t)) = ix(su(Tt)) for all « for which
su(t) Busu(Ms,«)-

The fact that every element of My is in the range of some i, follows
from (3.6) since, for each « € ONg there is a y € ONg and a name p, for
iy such that

[Va € Vylul ={uy(8): 5 € Vy g = 1.

(In fact vy = T(«) works, where T is defined in M as in Theorem 6).)

Note that the i4’s need not form a class sequence in My since M (and M)
need not be definable in My. Moreover, though it would seem reasonable that
for each T € (Mg «)E, we should have iy(su(T)) equal to Ty, the recursion
one might hope to perform in order to prove this inside My, cannot be carried
out since My does not know how Ty, is constructed from t. Nonetheless, the
result can be proven by resorting again to the model MB. Assuming that in
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M, v EON is such that TE Mg -, and letting 1, be as above, we can reason by
recursion in M B to obtain:

[y () ={py(6):6 €edomt}={c:0et)=1]p =1.
Collapsing to My gives us that
My = iy (su(T)) = Tu. (3.10)

We can now provide an improved version of Theorem [t5{3):

THEOREM 16 (Minimality Theorem) Suppose M = (M, E) and N = (N, F) are
models of ZFC. Suppose, in M, B is a complete Boolean algebra. Suppose that U is B-
generic over M. Suppose also that:

(A) There is a transitive embedding f : M. — N.
(B) There isT € N such that Ty = U.
Then there is a transitive embedding g : My — N for which g o sy = sy o f.

Proof. For the proof, since results are correct only “up to isomorphism,” we
identify both sy and the embedding f mentioned in part (A) with the corre-
sponding identity maps. This means that we are assuming M is a transitive
subset of both My, and N, and that we must prove that g is a transitive embed-
ding which is the identity on M.

Since for each y € ON™, Mg, € N, we can define define the maps i, r
in N in the same way we defined the i, u, in My . Before defining g, we make
several observations. Let y € ON”.

(1) For all x € M for which M = x € Mg -,

NE1i, r(x) =x.
@QNEi, r(a)=T.
(3) Forallt € (MB)E:

N = VtFdom T [iy,r(t) Fiy r(T) < t(t)FT]

@) M k= 0,7E Mg,

Mu ’: "Ly,uu(O') Eu i/y)uu("f) < [[0' S T]]Jg[ elu
<:>N'=iy)r(0')Fiy‘r(T).

Likewise,
Mu Eiyuay(0) =t u, (1) <= lo=1f el

= Ny r(o) =1y.r(1).
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The analogues of (-(3) for My, as well as the first parts of (4), follow
from (3.10). For (1), proceed by €-induction inside N as follows: Assuming the
result holds for all o for which N = ¢ F dom X, we have in N:

iy r(x) ={i,,r¥):yFxand x(y) FI}
={y:yFx}=x.

We have used here the fact that M is a transitive subset of N.
For (2), we have in N:

iyr(w) ={i, r(b):bFBandu(b)Fr}
—[bFB:bFI =T

Observation (3) follows immediately from the definition of i, r. For (4), it
suffices to prove the result for each infinite cardinal y. In order to perform an
induction involving pairs of names, we define in M a class function p on MB by

p(0) = least o such that 0 EMp 1.

In M, let py, = p [ Mg 4. Clearly, p, € N. We prove both parts of (4) simulta-
neously by induction in N on pairs (p+ (o), py (7)), well-ordered in the canonical
way. We have

[c et} eu

(Vitdom T Alo=1tlp)™ € U

for some t € (dom T)M, [t(t)™ € Uand [o =]} € U]
forsome t € (dom )¢, [t(t)™ € Uand N =iy r(0) =1y r(t)]
NE J3tFdom T [T(t) Flandiy r(o) = ‘Lyyr(fr)]

NE JtFdom T [iy‘r(t] Fi/yyr("f) and iy‘r(G) = iy)r("f)]

NE iy r(o)Fiy r(1).

rreeey

For the equality case, it suffices to prove the following:
NEi,.r(0) Ciyr(t) <= [oc TP e U (3.17)
We have:

(/\sEdom o o(s) = [s € T]]B)M eu

Vs € (dom o) (o(s)M e U= [s e T]J € U)
NEVsFdom o (o(s) FT = iy r(s) Fiy r(1))

N Vs ([sFdom o A ofs) FTl = i, r(s) Fi, r(7))
N Vs ([iy,r(s) Fiy r(0)] = iy,r(s) Fiy r(7)

N Eiyrlo) Ciyr(T).

[[O'QT]]%/EEU

et

This completes the proof of Observations (1)-(4). We now define g by

9((iyuy (0)™) = (iy.r(0)™
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By (3.9), g does not depend upon the choice of y. Moreover, g is well-defined
and one-one because

9((iyay(@)™M) = g((1y uy (1)) = 1, r(@)N =1, r(O
u

= o=} €
= (lyu,(0) = (iy uy (1),

We can establish the isomorphism property of g by replacing equality with
the appropriate membership relations in the above argument. The proof that
g”’My is a transitive subset of N follows immediately from the definition of g
and of the i,’s. The proof that g is the identity on M follows from Observation
(1) and its analogue for My,. O

Typically, if U is B-generic over M, then U ¢ M; unfortunately, U ¢ My
either, typically. The correct formulation is a minor variation of the the usual
result.

PROPOSITION 17 Suppose M = (M, E) is a model of ZFC. Suppose M = “B isan
atomless complete Boolean algebra”.

(D) If U 7s B-generic over M and L bas a meet in B, then \ U & U.
(2) For any U that is B-generic over M, uy & s{iM.

(3) Suppose M |= “T' C B and P = P(B)”. Then " is not internally P-generic in M.

Proof of (1). Suppose U has a meet in Bg and A U € U. First we show that A U
is an atom of Bg: Suppose there exists b € Bg for which 0 < b < AU. Let
D = {c € Bg : 0 < ¢ < AUJ}. By considering the dense set {d € Bg : d <
AUord A AU = 0}, one shows that there is d € UN D. But now d is an
element of U below the meet of U; since this is impossible, A U must be an
atom of Bg.

To complete the proof, let b = A U. By (1.4), M = “b is an atom of B.” [

Proof of (2). Suppose U is B-generic over M and uy € s{{M. Let I' € M be such
that uy = sy (T"). We show that U has ameet in Bg and A U € U, contradicting
(1. Using (3.2) and Proposition [15, we have

su(Te) = su(Mey, = (wu)e, = U =s{U,

and it follows that 'e = U. Thus I is a set X € M for which Xg C U; thus
e = U has a meet in U. O

Proof of (3). Suppose T is internally P-generic in M (recall Definition [if2)). Let
U = I'e. By (1.4), U is an ultrafilter in Bg; we show it is B-generic over M:
Suppose M = X C B and Xg C U. By (1.4) again, M = X C T'. By genericity of
FrinM,ME=b=AXecT. By(@1.4),b e Uandb is the meet of X¢ in Bg. We
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have shown A(Xg) € U, and hence that U is B-generic over M. But now again
notice that ' itself is an X € M for which Xg C U, andso AU = ATg € U,
contradicting (1). O

If b is an atom of B in M, the usual proof shows that the filter I" generated
by b is an ultrafilter that is internally P(B)-generic in M. Letting U = T, we
have that

[su(Mley = su(Me) = s U = (wu)ey,

from which it follows that uy € s{/lM.

In the present context of possibly non-wellfounded models, since isomor-
phism is not the same as equality (as it is in the transitive case), it might seem
possible that forcing over M with an atomless complete Boolean algebra always
produces a model My that is not isomorphic to M. This is not true, though.
If, for example, M is itself a forcing extension (Mo)uo obtained by adding a
single Cohen real, and My, is obtained from M again by adding a single Cohen
real, then it is well-known that M = My;. (To work out the proof of this in the
present context, use Proposition [18(x) and Theorem [21])

Next we show that forcing with isomorphic complete Boolean algebras pro-
duces isomorphic forcing extensions.

PROPOSITION 18 . Suppose M = (M, E) is @ model of ZFC.

(1) Suppose that, in M, B and C are complete Boolean algebras and i : B — C is an
isomorphism. Then for any ultrafilter U that is B-generic over M, graph(i)”U
is C-generic over M and i induces an isomorphism i : My — My, where
U’ = graph(i)”U. Moreoverit o sy = sy.

(2) In M, suppose B is a complete Boolean algebra. Suppose that A and B are both B-
valued models of Z¥C and that there is an isomorphism (a structure-preserving
bijection) j : A — B, all defined in M. Suppose U is B-generic over M. Let
M u, Mg u denote the respective collapses of A, B by U. Then M4y = Mz u

Proof of (). Using the fact that i induces an isomorphism j : Be — Cg, it is easy
to verify that U’ = graph(i)”U is C-generic over M. The usual argument [2}
3.12}, shows that, in M, i induces a Boolean-valued isomorphism i: MB — MC;
in particular, for all 0, 7TE M® and bE B,

[o=1lg=b <= [i(o)=1i(1)]lc =1i(b)
[cetlg=b <« [i(o) €i(1)]lc =i(b).
Deﬁne (in V) iu . Mu — Mu/ by
i%(1y) = unique oy € My such that M = i(7) = o.

Verification that i' is a well-defined isomorphism makes use of the properties
of i; the proofs are routine so we omit them. To see that i% o syy = sy, use the
fact that, in M i(x) = x for all x. O
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Proof of (2). Define f : M4 u — Mz u by

floth) = (i(0) .-

u

Now the fact that f is a well-defined isomorphism follows from onto-ness of j
and the following two equations (which hold for all o, T € A):

[o=1a =Iilo) =]
[cetda =T[lo)€j
0

Suppose i : B — C in M is an isomorphism and U is a B-generic ultrafil-
ter over M. Let U’ = i{”U. Then we will say that U and U’ are canonically
isomorphic generic ultrafilters.

To conclude this subsection, we develop some of the ideas needed for doing
forcing with partial orders in M. We let M, P, B be defined as above. Let e :
P — B be a dense embedding. Let G be a filter in Pg. We will say that G is P
generic over M if, for every D € M for which M = “D is dense in P” we have
G N Dg # 0.

PROPOSITION 19 Let M = (M, &) be a model of Z¥ C such that, in M, P is a partial
order, B is a complete Boolean algebra, and e : P — B is a dense embedding.

(1) Suppose U is B-generic over M. Define G by
G={pePe:e(p™Meul. (3.12)
Then G is P-generic over M.
(2) Suppose G is P-generic over M. Define U by
U={beBg:3p e GM=e(p) < bl (3.13)
Then U is B-generic over M.

Proof. The proof is very much like the usual one (see {135, Lemma 17.4]), using
Proposition |4| to weave in and out of M as needed. We prove the genericity
part of (1) and leave the rest to the reader.

Suppose M = “D is dense in P”. Then, in M, D, = e”D is dense in B \ {0}.
So (De¢)e = graph(e)”(Dg) is dense in Bg \ {0}, and we can find p € D such
that e(p) € (De)g N U. It follows that p € Dg N G. O

Whenever we are given G as above, we will call U, as defined in (3.13), the
B-generic ultrafilter over M derived from G and e. Likewise, if we are given U,
we call G, as defined in (3.12), the P-generic filter over M derived from U and
e. We suppress mention of e if it is clear from the context. It is easy to verify

that
U is the B-generic ultrafilter derived from G, e <=

G is the P-generic filter derived from U, e. G-14)
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Whenever we are given M, P, B, e as above, and G is P-generic over M, we
evaluate terms o € (MB)g by putting oG = oy and we let Mg be simply My,
where U is the B-generic ultrafilter over M derived from G.

Whenever P and Q are partial orders (in M) having isomorphic comple-
tions, we say that P and Q are forcing equivalent and write P ~ Q. Clearly,
forcing with forcing equivalent partial orders produces isomorphic extensions.
We also make the following definition:

Suppose in M, i : ro(P) — ro(Q) is an isomorphism, ep : P — ro(P) and
eq : Q — ro(Q) are dense embeddings, G is P-generic over M, H is Q-generic
over M, and graph(i)”[graph(ep)”G] = graph(eq)”H. Then G and H are said
to be canonically equivalent generic filters.

The next corollary gives more information about the canonical name for a
generic filter in P:

COROLLARY 20 Suppose M = (M, E) is a model of ZFC and, in M, P is a partial
order, B =ro(P), and e : P — B is a dense embedding.

() [g is the generic filter in P derived from w and ]} = 1.
(2) [w is the generic ultrafilter in B derived from g and M =1.

(3) Suppose G is P-generic over M and let U be the B-generic ultrafilter derived
from G. Then G = (g) Eu (where (gy,) Eu denotes the extension of
8u < Mu)

Proof. Parts (1) and (2) follow easily from Theorem 3). For (3), we have the
following chain of equivalences for a given p € P:

(e(p))™ eu
(e(m)™ € (wuey
My = e(p) Euuay
Mu EpEugy
pE (gU)Eu'

peG

1eeey

4 TWO-STEP ITERATIONS

Our objective in this section is to show that if, in M, B is a complete Boolean
algebra and, still in M, [x is a complete Boolean algebra | = 1, then there is a
complete Boolean algebra C = B * x defined in M such that forcing with C is
“the same as” forcing with B and then with x. The proof requires maneuvers
among the internal worlds of several (possibly) non-wellfounded models, and
these steps require some care. The usual proof for transitive models makes
substantial use of the transitive collapsing functionn,, : MB — M[UJ; our proof
requires that we work with the equivalence classes by U directly. This leads
only to an isomorphism (rather than equality) between the model obtained via
a two-step iteration and that obtained via its canonical one-step analogue.
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We begin by fixing the following notation: M = (M, E) is a model of ZFC,
and P, B, 7, x € M are such that, in M P is a partial order and B = ro(P), and

([t is a partial order and X = ro(7)]g = 1)M.
In M we define an equivalence relation ~ on the M-class
{c:0EMBand[ocex]g =1}

by putting o ~ T if and only if [0 = t]g = 1. In M, let B % X denote a set of
representatives from the ~-equivalence classes and let C = B * x. (C is a set by
Theorem 5) since each member of B x X is determined by a pair (A, W) where
A is a maximal antichain in B and W C dom x.) In M, define a meet operation
A =/c on C by

oAT=1 iff [oAT=ulg =1.

In a similar fashion, define the operations V¢, *c. Still in M, define a map
u =1ugy : B — Bxx as follows: For each b € B, let 0y, be the unique element
of C such that [o, = 1¢clg = b and [op, = Oc] = b*. The map is well-defined
by Theorem 5{4).

In M, let ep and é, witness that the completions of P and 7t are B and ¥,
respectively; that is, ep : P — B is a dense embedding and [é; : m — X is a
dense embedding [g = 1. Let P. = ejP and let 7. be a B-name such that
[e"nt=m.]g =1.

Define P, * 7, to be the following suborder of C: Put o € P, * 7. if and
only if there exist p € P and p € C such that

[uemels =1 and  o=u(p) Ac w

An alternative definition of two-step iteration for partial orders is useful.
In M, we define P& as follows: Let 7T be a set of representatives of equivalence
classes determined by the equivalence relation [0 = t]g = 1, defined on the
M-class {0 : [0 € ntlg = 1}. (Theorem 5) can be used to show that 7 is a
set.) Then the underlying set for P ® 7 is P x 7. (This is a way of ensuring that
“full names” are used in iterations, in the sense of [19, Chapter VIII}) Identify
elements (p, o), (q,T) € P ® mwhenever p = q and p I+ 0 = 1. Define an order
relation on P ® 7 by putting (p,0) < (q,7) ifand onlyif p < gandp IF 0 < 7.

Given a B-generic ultrafilter U; over M and a xy,-generic ultrafilter U,
over My, we define

U; «x Uy :{O‘G (B*X)E 1oy, € Uz}.
If Gy is P-generic over M and G; is g, -generic over Mg, , we define

G1 ® G2 ={opy(p,0) € (P®m)E :p € Gy and 0, € Gy}.
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THEOREM 21 Suppose M = (M, E) is a model of ZFC and suppose B,x, C,P, 7, ep,
ér, Pe, e, Up y are defined as above.

(D) M = “C is @ complete Boolean algebra under the operations \c,V ¢, *c”.

(2) In M : The order relation <c induced by the Boolean operations /\c,VN ¢, *c satis-

fres:

o<ct #ff logytds=1.
() In M, the map g  is a one-one complete homomorphism.
@) In M, ro(Pe ) = B xx.
) In M, Pe @ me = Pe * Te.

(6) In M, ro(P @ ) = B « . Indeed, the function f : P @ Tt — B « X defined in M by
f(p,0) = ep(p) Ac 0 Where o¢ is a B-name for ex(0)) is a dense embedding
with the following property: Suppose that Uy, U, are as above, and G1, G, are
the corresponding derived generic filters, or, equivalently, that G, G, are as above
and Uy, U, are the corresponding derived generic ultrafilters. Then

G1 ® Gz = {opy(p,0) € (P@m)¢ : f(p,0)™ € Uy + Uy).

(7) Suppose Uy, Uy, G, G, are defined as above.

(@ Uy * Uy zs B * x-generic over M.

(b) If f is defined as in (6), G1 ® G is the P ® m-generic filter over M that is
derived from Uy * U, and f.

(e ere is an isomorphism g : uu, — Mu.su, wi e followin
© Th b (Mu,)u, Mu, «u, with the following
property: if su,, su,u,, Su, «u, represent the usual insertion maps, then

g © SU1UZ o SU] = Su1>kuZa

and g o sy, u, 5 a transitive embedding. Moreover, treating a B-name o as
a B x x name, we bave

glsu,u,(ou;)) = ou,«u,- (4.1)

REMARKS
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() Among the standard proofs that show that two-step iterations are equiv-
alent to canonical one-step iterations, the one that seems most easily
adapted to the context of non-wellfounded models is the Boolean-valued
model approach. Part (7) of the theorem, along with Theorem [23|below,
provides the details of this adaptation. However, many theorems about
iterated forcing are most easily stated in terms of the partial order ap-
proach. Part (6) of the theorem shows that, as is the case for transitive
ground models, the partial order approach can be used in combination
with the Boolean algebra approach.

(2) In light of (3), we will treat B as a complete subalgebra of B  x in parts (6)
and (7), and in the sequel.

(3) By (3.14), one may also conclude in (7b) that U; * U, is the B * x-generic
ultrafilter over M that is derived from G; ® G, and f.

(4) In the case of transitive ground models, one easily proves that M[G1][G2]
= M[G ® G;] by invoking the standard Minimality Theorem. In the
present context, the relevant minimality theorem is Theorem[16] but this
only gives us one-one embeddings in either direction between (My;, Ju,
and My, .u, — it is not obvious that either embedding is onto; nor is it
obvious that the embeddings are inverses of each other. We have taken
a simpler approach in our proof that these models are isomorphic by
using instead the well-known isomorphism between the Boolean-valued
models (MB)C and MB*C,

(5) With reference to (70), it is easy to show that anyisomorphism h : (Mu1 )Uz
— My, «u, has the property that h o sy, is a transitive embedding.

Proof of Theorem. Proofs of (1)—(4) can be found in {15} and {2}. For (5), the map
that works is P. ® e — Pe * e : (p,0) — p Ac 0 (see [15] for more details).
For (6), because, in M, ro(P) = ro(P.) and [ro(7) = ro(me)]g = 1, it follows
(see {9, VIIL.K1]) that

ro(P @ 1) = ro(Pe @ Tte) = 10(Pe * 1) = B x X.

To obtain the specific results for f, we give an outline:

Argue in M. The fact that f”P®@7is dense in C follows from (5). To see that
(p,0) < (q,7) implies f(p, o) < f(q, 1), note that, by (5) (and the map given in
the proof), it suffices to show that

(@ ep(p) < ep(q) and

(b) ep(p) IF éx(0) < éx(T).
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Part (a) follows because ep is a dense embedding. For part (b), likewise, since,
in MB, ¢, is a dense embedding, we have

plFo<tT=ep(p) <o <1lg = ep(p) < [éx(0) < éx(T)]B.

To see that (p,0) L (q,7) implies f(p, o) L f(q,T), assume f(p, o) and f(q,T)
are compatible. Then for some v € P,

ep(1) < [Ix(x <exn(o) Ax<ex(t)lp <[Bx(x <o Ax<T)lB.

Let p be such that ep(r) < [ < 0 A p < 7). It is easy to check that r must be
compatible with p, and any s below both of these must be compatible with g.
Pick t below such an s and q. Then (t, u) < (p, 0), (g, T), as required.

To prove the last part of (6), it suffices to prove the following: For each
opy(p,0) € (P Mg,

opy(p,0) € G1 ® G2 = (ep(p) Ac O'e)M e U+ Uy,

The main step in the proof is the following claim:
cLaIM. ep(p)™M € U; % U, if and only ifep(p)™ € U;.

PROOF OF CLAIM. For the proof, we set p. = ep(p)™. Recall that p. is implic-
itly embedded in C = B x x by identifying p. with the unique c. € C for which
[ce = 1418 = pe and [ce = 0y = pi. Thus:

pe €Uy <= [ce=1Ip €Uy
> (celu, €Uz
— (pe)u, €Uz
< Pe € U xUy,

and this proves the claim.

CONTINUATION OF THE PROOF OF THE THEOREM. Notice also that
) My,
oe € Uy x Uy <= ((éx)u,(oy,)) e U,. (4.2)
By the Claim and (4.2), we have

opy(P,0) €G1® G2 <= peGrandog, €62
, M
< ep(p)™ e U;and ((éx)u,(oy,)” " € Uz
— ep(p)™MelUjxUand o, € Uy % Uy
M
<~ (ep(p) Ac O‘e) e Uy *x Uy,

as required.

We turn to the proof of (7). First notice that (7b) follows immediately from
(6) and the genericity of Uy * Uy, by Proposition To prove (7a) — that
Uy = U, is B * x-generic (we leave the proof that it is an ultrafilter in Cg to the
reader) — begin by setting C = B x x in M. Suppose M = “D is dense in C”.
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cLaiM. My, E “Dy, is dense in xy,”.

PROOF OF CLAIM. In My, let Ty, Ey, xu,. Then there is, in M, a 0 in C such
that [o = T]]Jg’[ € Uy. Since M E “D is dense in C”, there is a & € M such that
MESED A b <c o. Thus,

My, = du, <Xu1 Tu, and du, Eu, Du;,.

CONTINUATION OF THE PROOF OF THE THEOREM. Let Q,S € My, be such
that

Mu1 ’ZS:DLh andQ:Xu].

Since U, is Q-generic over My, , it follows that there is Ty, € My, such that
Tu, € SEU] N U,. We can find o € (MB)E such that [o = T]]Jg[ € Uy and
M= oED. Thus, oy, = Ty, and oy, € U,. It follows that o € Uy = U,. Thus,
we have shown that (U; « U) N Dg # 0, as required.

Next, we prove that My, «u, = (Muy, )u,- As in [Be, Chapter 6], we define
in M the following class of names:

JX = {cEME : [0 is a x-name]s = 1}.

Bell {Be, Chapter 6} shows that JX can be endowed with a Bxx-valued structure
with the following definitions:

[o=1ljx = wuniquec € Bxxsuchthat[c=[oc="1]]g =1
[o € tljx = wuniquec € Bx*x suchthat [c =[oe ] ]g=1.

Using this structure, Bell shows that, in M, JX is isomorphic (as a Bxx structure)
to MB*X and it is easy to verify that in his proof, canonical names are matched
in the following way: For any x € M,

% %, (4-3)

For the rest of the proof, we identify JX with MB*X, treating My, .11, as obtain-
able by collapsing either of these B * x-valued models by U (this identification
is justified by Bell’s result and by Theorem 2)). As a notational consequence,
we shall rewrite Boolean values [b]x as [l xy-

Define g : (Mu,)u, — Mu,su, as follows: Let o € (MB)g be such that
My, = “oy, is axy, -name”. Note that every element of (My, )y, is of the
form (o, )u, for such a 0 — we shall call such names U;-good names. Let
o’ € (MP)g be such that [0’ is a x-name]}' = 1 and oy, = O'h]. Note that
o’ € (JX)g. We shall call o/ an auxiliary name associated with o. Now, using our
identification of JX and MB*X  we define g at (o, )u, by

g((ou,)uy) = U, wu,-

We verify that g is well-defined and one-one as follows: Given U;-good names
o, T with associated names o', v € (JX)g, let ¢ € (B *x)g be such that
c=[o" =7I§,. (4.4)
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By definition of the B * x structure on JX, we have in M:
[c=[o" =718 =1. 4.9

‘We obtain the following chain of equivalences:

o -
U U, Uy
9((ou,)u,) = 9((tu, u,)-

(ou)u; = (ou ), = [ofy, =7, Iy, € U
< cuy, €Uz (by (4.5))
— celxly
— [0 = T’]]%{*X el xUy  (by 4.4)
e
<

Replacing equality with appropriate forms of the membership relation (Ey, or
Eu, «u,) in the above chain of equivalences yields a proof that

(ou,)u, Eu, (0w )w, <= 9((ow,)u,) Eupsws 9((tuyu,) -

To complete the proof, we must show that g is onto. If o7, .1, € Mu,«u,,
where o’ € (JX)g, then clearly o’ is a name associated with itself, and we have
easily that g((o{;, Ju,) = o1, ,u,» as required.

To prove (7¢), notice that

Su1u2(5u1 (x)) = ((i)lh )uz'

Thus, by (4.3),

R«

9 (suyus (su, (x)) = o (1

)U| )u2>: )VCU]*UZ = SLh*le (X)

For the second part of (7¢), if x € My, and zEy,.u, 9(su,u,(x)), there
isay € (MU1)u2 such that z = g(y) and so y Ey, su,u,(x). Since sy, u, is
a transitive embedding, for some w € My, y = sy,u,(w). Therefore z =
9(y) = glsu,u, (W) € (gosu,u,)”Mu,, as required.

Finally, we verify equation (4.1). When we view a B-name o as a B * x name,
we have automatically that [o is a x name]g = 1. Thus, o is its own auxiliary
name, and we have

g(su,u,(ou,)) :9(((Gu1)V)uz) = OU, *U,- O

The following is a useful technical corollary to Theorem [1f7). It says,
roughly, that the canonical isomorphism g : (My,)u, — Mu,«u, respects
internal collapsing maps.
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COROLLARY 22 Suppose M = (M, E) is a model of Z¥ C and suppose B, x, C, P, 7, ep,
érn, Pe, e, Uy, and U, are defined as in Tbeorem Let g: (Muy,)u, — Mu,«u, e
the canonical isomorphism and let sy, , su,u,, and su, «u, be the insertion maps, again
as in Theorem 21 Let iy, and iy, ., be the yth internal collapsing maps for
Mu, and M, «u,, respectively, as defined in (3.8). Then for all 6 € M3y -,

o5, (y g, (51, (00))) = by, (5Upetsy (0)).

Proof. By our remarks preceding Theorem

1"’Y“.lu1 (SU1 (G)) = GLh and 1."Y,‘.lu] *UZ(SLH*LQ(O-)) = Uu]*u2~

The result now follows from the final clause of Theorem 7). O

A version of the standard converse to Theorem 7) is also true; the proof
does not differ much from the usual one. We present it as a separate result be-
cause we make slightly different assumptions from those used in Theorem21]

THEOREM 23 Suppose M = (M, E) 75 @ model of ZFC. Suppose that in M, B and
C are complete Boolean algebras and (X is a complete Boolean algebralg = 1. Suppose
M k= “h: C — B x is an isomorphism”. Suppose U is a C-generic ultrafilter over M.

(1) Let Uy = (graph(h)”U) N Bg. Then U, is B-generic over M.

(2) Define Uy C x,,, as follows: For each v € (M®) for which [t € xI§' =1,
let T'—the name associated with T—be the unique element of B x X for which
[ = 1IY = 1. Put tu, € Uy ifand only if graph(h=")(7') € W. Then U, is
a X, -generic ultrafilter over My, .

(3) graph(h)”U = U; * Us.

Proof. For (1), we verify genericity only: Suppose X € M and Xg C U;. Suppose
M E Y = h(X). Let c be such that M = ¢ = AcY. Let b be such that
MEb=h(AcY) = Ap.y X. Since ¢ € U and h is an isomorphism, we have

graph(h)(c) = b € graph(h)"U.

Since Xg C B and M = “B is a complete subalgebra of B x x”, it follows that
b=Ap, Xe € (graph(h) ”Ll) N Bg = Uj.

For (2), suppose My, = “Dj is dense in xy, \ {0}”. We show that (D; )Eu] N
U, # 0, and leave the verification that U, is an ultrafilter to the reader. Let D;
be a name for D7 and let b € U be such that

M = b < [D; is dense in X .
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Let D be such that
MED={cEBx*x)\{0}:c<[ceDlg)
The usual argument (see {15, Lemma 23.4]) shows that
M E “D is dense in (B xx) \ {0}”.
Now let c, z be such that
z € graph(hf] J(Deg)N U,

equivalently,
graph(h)(z) = ¢ € Dg N graph(h)”U. (4.6)

Since graph(h~1)(c) € U, by definition, cy, € U,. To complete the proof of
(2), it suffices to show My, = cy, Eu, D1. Since M = cED, we have M = ¢ <
[c € D] € B, and we conclude from (4.6) that

[c € D41} € graph(h)”U N B = Uj.

Thus, My, &= cu, Eu, D1, and we are done.

For (3), it suffices to prove graph(h)”U C U; * U,. Suppose ¢ € U and let
graph(h)(c) = d. Now by definition, dy, € Uy; thatis, d € U; % U,.

For (4), since we have shown that the graph of the isomorphism h carries
U to Uy * U,, we can invoke Theorem I) to conclude that My = My, .u,. O

As usual, a kind of inverse operation for * can be defined as follows: In
M, suppose D is a complete Boolean algebra and B is a complete subalgebra
of D. Let o be a B-name satisfying [o is the filter in D generated by ug]g=I.
Then D/B is a B-name T satisfying [t = D/olg = 1. The proof of the next
proposition can be found in {15} and {z].

PROPOSITION 24 Suppose in M we have that B is a complete subalgebra of a complete
Boolean algebra D. Then D = B x (D/B). O

5 ITERATED FORCING

Since iteration of partial orders takes place entirely within the ground model,
there are no concerns about iterated forcing that are unique to the setting
of non-wellfounded ground models. A typical application of the usual Factor
Lemma (which is proven entirely within the ground model) involves breaking
up a model M[G] obtained by iterated forcing into a model M[G,][G«—] ob-
tained by two-step forcing. In the context of arbitrary ground models, this sort
of maneuver is addressed by our Two-Step Iteration Theorem (and so, using
the analogous notation of this paper, we would have that My, = (Muv)u‘x,y)'
Therefore, this section on iterated forcing has been included just for the sake
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of completeness. Since we are using the Boolean algebra approach to forcing,
we follow closely the treatment in {T3].

We begin by fixing an arbitrary model M = (M, E) of ZFC. Working in M,
an o-stage iterated forcing is an object

{(Per&< o), (Ber&< o), (e 1 E <o), (me i E <o), (lgy 1 E<Y < &)
satisfying
(1) Each P is a partial order.

(2) Each B¢ is a complete Boolean algebra and e; : Pz — By is a dense embed-
ding.

(3) For all & < o, [ is a partial order]g, = 1.

(4) Forall £ <y < «, izy : By — By is a one-one complete homomorphism,
and (igy : &£ <7y < ) is a commutative system.

(5) Foreach & < o, Pz 11 = Py @ s

(6) If B < ocis a limit, then Pg is either the direct or inverse limit of the P,
& < B, and igg are the corresponding embeddings.

As in [15]l, elements of P, can be identified with functions p = (pg : & < «)
satisfying

AVE<a(pl&ePy);

B) VE < a ([pg € melp, =1);

OVa,rePy(a<ar <= V&E<ax[qlE<gr [ Eand q | &by g <n, Te)).

Moreover, P, consists of all functions that satisfy (A)—(C) if « is a limit and

P is an inverse limit. If P, is a direct limit, then P4 consists of all functions
p = (pg : & < «) satisfying (A)—(C) and also

F<aVp(B=E = p=1).
‘We may also assume that
the embeddings e;, : By — By satisfy ez (p) =p 1717 ... (5.0

When Py is a direct limit, it is sometimes useful to identify its elements with
functions p = (pg : & < B) for some B < « that includes the support of p; see
[l

As usual, one can prove the standard Factor Lemma, which says that an
iteration Py can be factored as Pg ® 7p, where T3 is, in MB# an (o — B)-stage
iteration. See {15, Lemma 36.6].
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Our statement of the Factor Lemma here will make use of simplifications
due to Baumgartner {1}. We write G to denote a filter that is P4-generic over
M. For § < «, we assume Gg = {p [ B | p € GuJ; this assumption is warranted
by the fact — which can be proved using the standard argument {1, Theorem
1.2} (carried out inside M) — that the set {p [ B | p € G4} is in fact Pg-generic
over M.

As a further simplification, we may specify the tail T, of the previous para-
graph as a Pg-name for the set Pg«, which is defined in M as follows:

Ppa ={pP :p € Po} where pP =p [{y: B <y < .

The ordering on Pg is defined relative to a generic Gg by setting f < g (in
M) if and only if for some p € Gg, M = pUf < p UginPy. (Here, we have
identified P o with its image su, (Pp«), where sy, : M — My, is the insertion
map and Ug is the generic ultrafilter derived from Gg.) The standard proof {,
Theorem 5.1}, carried out in the ground model, then establishes that P, can be
viewed as a two-step iteration of Pg and 1g:

THEOREM 25 ([TD) In M, P 75 isomorphic to a dense subset of P & Tg. O

Then, the Factor Lemma establishes that T itself is a x — 3-stage iteration,
as viewed in Mg ;:

THEOREM 26 (1D In M,
Tlkp, Tp s isomorphic to an & — (3-stage iteration,

where 1 = 1p, and |-p,, is the forcing relation for P, in M.
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