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Abstract: We study a canonical modal logic introduced by Lemmon, and axiomatised
by an infinite sequence of axioms generalising McKinsey’s formula. We prove that the
class of all frames for this logic is not closed under elementary equivalence, and so is
non-elementary. We also show that any axiomatisation of the logic involves infinitely
many non-canonical formulas.
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1 
Our story starts with McKinsey’s formula,1

M : �♦p→ ♦�p. (1)

M has long been studied by modal logicians. On the one hand, the normal
modal logic K4M (also known as K4.1) axiomatised byM together with the tran-
sitivity axiom �p → ��p is a well-behaved logic. It is canonical (i.e., valid in
its own canonical frame), and hence Kripke complete. The class of all frames

1McKinsey actually studied (in [18]) the system S4 augmented with �♦p∧�♦q→ ♦(p∧ q),
but Sobociński showed in [19] that this is the same system as S4 + M. For this and further
discussion, see [9].
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validating K4M is elementary: it is the class of transitive frames such that collo-
quially, every world sees a world that can see at most itself (see, e.g., [3, proposi-
tion 3.46] or [2, example 3.57]).

On the other hand, M itself is rather wild. The logic KM that M axioma-
tises alone is determined by its finite frames [4], and so it is Kripke complete.
However, the class of all frames validating KM is not elementary [6], and not
even closed under elementary equivalence [20].2 KM is not the logic of any
elementary class of frames [6], and is not canonical [7]. M is often called the
simplest formula not equivalent to a Sahlqvist formula (see [2, §3.6] or [3, §10.3]
for details of Sahlqvist formulas).

KM was cited by Lemmon in [17] as a logic that had not yielded to the
‘canonical model’ completeness method expounded in that work. Lemmon then

generalised M to an infinite sequence of formulas

Mk : ♦
(
(♦p1 → �p1) ∧ . . .∧ (♦pk → �pk)

)
, for k > 1. (2)

M is equivalent (in the basic normal modal logic K) to M1. It may help to
observe that since ♦p → �p is equivalent to �¬p ∨ �p, we can rewrite Mk

equivalently as

M0 = >, Mk = ♦
∧
i<k

(�pi ∨�¬pi) for k > 1, (3)

where for later convenience we use the propositional variables p0, . . . , pk−1. We
will use this form of the Mk throughout the paper. Now we can see that the
validity of M1 in a Kripke frame F says that for any partition of the worlds of
F into at most two sets (corresponding to the interpretations of p and ¬p in a
Kripke model over F), any world sees a world whose successors all lie in a single
partition set. Mk says the same as M1 but for a partition into at most 2k sets.
Clearly, Mk+1 `Mk for all k > 1. Lemmon showed by a short proof-theoretic
argument that assuming transitivity, all the Mk are equivalent to M1.

Lemmon defined KM∞ to be the modal logic axiomatised by the axioms
in (2). This logic, standing between KM and K4M, is the subject of our paper.
Lemmon proved that it is the logic of the class of Kripke frames satisfying

m∞ : ∀x∃y
(
R(x, y) ∧ ∀z z ′(R(y, z) ∧ R(y, z ′)→ z = z ′)

)
. (4)

This condition says that every world sees a world with at most one successor.
By considering partitions as above, it is easily seen that KM∞ is valid in all
frames with this property. Lemmon proved completeness by a compactness
argument that showed that the canonical frame for KM∞ satisfies m∞. This
means that KM∞ is canonical. The logic obtained from KM∞ by adding the
transitivity axiom is K4M, so since the transitivity axiom is also canonical, this
gives another proof of the canonicity of K4M.

2Actually, the class of frames validating any modal logic is elementary iff it is closed under
elementary equivalence [21].
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Since KM∞ is the logic of an elementary class of frames — those satisfy-
ing m∞ — its canonicity also follows from Fine’s Theorem that the modal logic
of an elementary class of frames is canonical [5]. However, the proof by com-
pactness is different, and the method applies in some cases where Fine’s re-
sult does not [11, 10]. A similar compactness argument was used by Hughes
in [14]. It was generalised by Balbiani et al. in [1, §3], where it is shown
that if σ(p0, . . . , pn−1) is a Sahlqvist formula with first-order correspondent
φ(x), then {♦

∧
i<k σ(pi0, . . . , p

i
n−1) : k > 1}, where the pij are distinct proposi-

tional variables, axiomatises the modal logic of the class of frames satisfying
∀x∃y(R(x, y) ∧ φ(y)). By Fine’s Theorem, this logic is canonical. KM∞ is
covered by taking σ = ♦p → �p, and the logic in [14] is covered by taking
σ = �p→ p. [12] derives axioms for the modal logic of an arbitrary elementary
class of frames; as an example, (3) is obtained effectively from a formulation of
(4) in hybrid logic.

In [15, §6], Jónsson showed using new algebraic proofs that the Mk are
theorems of K4M, that KM∞ is canonical, and hence that K4M is canonical.

In [1, §5], it is shown that KM∞ (and also the logic axiomatised by Mk, for
each finite k) has the finite model property and is decidable. It is stated that
KM∞ is PS-complete and that the proof will appear in a sequel.

 : Here, we add to the impression that KM∞ lies somewhat nearer
to KM than to K4M. First, we show that, just as for KM, the class of all frames
for KM∞ is non-elementary, and not even closed under elementary equivalence
(Theorem 2.2 below). The proof is similar to that of [20] for KM, and the result
was also proved independently by the same argument in [1]. In remark 3.9, we
show that the class of frames for KM∞ is not closed under ultraproducts.

We also study the canonicity of KM∞. We have seen that it shares canonic-
ity with K4M. But we will show that it is only barely canonical. A formula is said
to be canonical if the logic that it axiomatises is canonical. We prove:

• (Theorem 4.3) For no k > 1 is Mk canonical. This generalises the result
of [7] that M is not canonical.

• KM∞ cannot be axiomatised by canonical formulas. Hence, it is not
axiomatisable by Sahlqvist formulas.

• (Theorem 4.4) Indeed, any axiomatisation of KM∞ has infinitely many
non-canonical axioms.

It follows by Fine’s Theorem that KM∞ is only barely the logic of an elementary class
of frames. No Mk (for any k > 1) axiomatises the logic of any elementary class
of frames; and any axiomatisation of KM∞ contains infinitely many axioms
that, taken individually, fail to axiomatise the logic of any elementary class of
frames. But KM∞ itself is the logic of a finitely axiomatisable elementary class
of frames.
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Thus, the canonicity of KM∞, and its being the logic of an elementary class
of frames, do not arise from properties of any finite number of axioms. They
only emerge in the limit when all the axioms are taken together. This striking
phenomenon has been seen before. In an algebraic setting, [13] showed that
the variety RRA of representable relation algebras, and also the variety of modal
algebras of ‘infinite chromatic number’, cannot be axiomatised by finitely many
non-canonical axioms plus arbitrarily many canonical ones. Analogous results
on elementary frame classes then follow from Fine’s Theorem as above. We use
the same proof methods here. For each k, l with 2 6 l 6 k < ω, we construct
an inverse system of finite Kripke frames validating Mk, whose inverse limit is
a frame that validatesMl but notMl+1. The frames are based on those used in
the proof in [7] of non-canonicity of KM. We can then deduce the third result
above by first-order compactness.

  : In section 2 we prove that the class of frames
for KM∞ is non-elementary (Theorem 2.2). In section 3, we introduce some
particular frames, and determine which Mk they validate. They will be put to
use in section 4, where we show that no Mk is canonical (Theorem 4.3), and
that any axiomatisation of KM∞ involves infinitely many non-canonical axioms
(Theorem 4.4).

 Let f : X→ Y be a map. We write dom f and rng f for the domain
and range of f, respectively. If S ⊆ X, we write f�S denote the restriction f
to S. If S ⊆ Y, we write f−1[S] for {x ∈ X : f(x) ∈ S}. If y ∈ Y, we write
f−1[y] for f−1[{y}]. For sets Xi (i ∈ I), we write

∏
i∈I Xi for the set of maps

η : I→
⋃
i∈I Xi such that η(i) ∈ Xi for each i. We often write η(i) as ηi in this

case.
Natural numbers will be regarded as ordinals. So for a natural number n < ω,

we identify n with {0, 1, . . . , n − 1}. For an ordinal α, we write α2 for the set
of maps f : α → 2, and <ω2 for

⋃
n<ω

n2. Given a set X and a cardinal κ, the
expression [X]>κ denotes {Y ⊆ X : |Y| > κ}.

 : We set up our notation for this. A (Kripke) frame F =

(W,R) consists of a non-empty setW of ‘worlds’, together with a binary ‘accessi-
bility’ relation R onW. We will write dom F forW, and write R(x, y) to indicate
that (x, y) ∈ R. An R-successor (respectively, R-predecessor) of w ∈ W is a world
x ∈ W satisfying R(w, x) (respectively, R(x,w)). We may indicate informally
that R(w, x) by saying that w sees x, or that x is accessible from w. We will
write Rw for the set of all R-successors of w.

We fix a countably infinite set V = {p0, p1, . . .} of propositional variables.
An assignment into F is a map h : V → ℘(W), the power set of W. The pair
(F, h) is called a (Kripke) model. We evaluate modal formulas at worlds of Kripke
models in the usual way: for p ∈ V , (F, h), w |= p iff w ∈ h(p); booleans as usual;
and (F, h), w |= ♦φ (respectively, (F, h), w |= �φ) iff (F, h), x |= φ for some
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(respectively, all) x ∈ Rw. A modal formula φ is valid at a world w of a frame F

if (F, h), w |= φ for every assignment h into F. φ is valid in a frame F, written
F |= φ, if it is valid at every world of F.

A frame (W,R) is a generated subframe of another, (W ′, R ′), if W ⊆ W ′ and
R = R ′ ∩ (W ×W ′). In this case, it is known (e.g., from [2, proposition 2.6]
or [3, Theorem 2.7]) that for any h ′ : V → ℘(W ′), if h : V → ℘(W) is given by
h(p) = h ′(p) ∩W for p ∈ V , then

(W,R, h), w |= φ ⇐⇒ (W ′, R ′, h ′), w |= φ

for everyw ∈W and every modal formulaφ. Hence, validity is preserved under
generated subframes.

We will assume familiarity with basic notions of modal logic, such as canon-
ical models. See [2, 3] for guidance if required.

2    KM∞  -
Using a result of the first author and an argument along the lines of van Ben-
them’s proof for KM in [20], we can establish our first result. We first quote
Theorem 1 of [7] (reproduced as [8, Theorem 10.1]).

 2.1 Let F = (W,R) be a frame. Suppose thatW contains a point rwith the
property that |Rm| > |Rr| +ω for everym ∈ Rr. Then noMk (k > 1) is valid in F.

Proof. Let |Rr| = κ, and put Rr = {mi : i < κ}. Define distinct points xi, yi ∈W
for i < κ by induction as follows. If i < κ and xj, yj have been defined for all j < i,
we define xi, yi to be any distinct points of Rmi \ {xj, yj : j < i}. This is possible
because |Rmi | > κ +ω, so Rmi \ {xj, yj : j < i} is infinite. Now define a Kripke
model M over F by making p true at precisely {yi : i < κ}. If M, r |= ♦(�p∨�¬p),
then there is i < κ such that M,mi |= �p∨�¬p. But xi, yi ∈ Rmi , M, xi |= ¬p,
and M, yi |= p, so this is impossible. Hence, M, r 6|= M1. Since Mk+1 `Mk for
k > 1, no Mk for any k > 1 is valid in F. �

 2.2 For each k > 1, the class of frames that validateMk is not closed under
elementary substructures, and hence is not elementary. The same holds for the class of
frames validating KM∞.

Proof. Let F = (W,R) be the Kripke frame with W = {r} ∪ [ω]>ω ∪ω, where
r /∈ [ω]>ω ∪ω is arbitrary, and R is given by:

Rr = [ω]>ω,

RS = S for each S ∈ [ω]>ω,

Rn = {n} for each n ∈ ω.

(So for n ∈ ω and S ∈ [ω]>ω, R(S, n) holds iff n ∈ S.) Then F is a frame
for KM∞. For, given any k > 1 and any assignment h : {p0, . . . , pk−1} → ℘(W),
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there is S ∈ [ω]>ω such that for all x, y ∈ S and i < k, we have (F, h), x |= pi iff
(F, h), y |= pi. Then (F, h), S |=

∧
i<k(�pi ∨�¬pi), so (F, h), r |= Mk. Validity

of Mk at all other points in F is clear, as they have a successor (an element of
ω) related only to itself. So F |= Mk for each k, and F validates KM∞.

But in any countable elementary substructure F0 = (W0, R0) of F, it is easy
to check that r ∈ W0, and |Rr0| 6 ω = |RS0 | for each S ∈ Rr0. (For example, this
follows from the preservation under elementary substructures of the formulas
∃x∀y¬R(y, x) and ∀x(R(r, x)→ ∃>nyR(x, y)) for each finite n.) By Theorem 2.1,
F0 6|= Mk for every k > 1.

Hence, the class of frames validating KM∞ is not closed under elementary
substructures and so cannot be elementary. Also, for each k > 1, the class of
all frames validating Mk is not closed under elementary substructures (since F

validates Mk but F0 does not). �

The proof shows that if L is any modal logic such that KM ⊆ L ⊆ KM∞, then
the class of frames validating L is not elementary. This was proved indepen-
dently in [1, Theorem 21] by the same argument.

3   Mk   
In this section, we study the canonicity properties of KM∞ and its axiomatisa-
tions, using special frames based on those in [7].

3.1  
 3.1 Let F = (W,R) be a frame. A world of W is called a root of F

if it has no R-predecessors, a leaf of F if it has no R-successors other than itself,
and a midpoint, otherwise. A world is reflexive if it is R-related to itself, and
irreflexive otherwise.

F is said to be squat ([7] uses the term ‘trellis-like’) if it has a unique root,
say r; r is not a leaf; all (R-)successors of r are midpoints; and all successors of
midpoints are reflexive leaves.

For example, the frame in Theorem 2.2 is squat.

 3.2 We will often use the obvious fact that each Mk is valid at every
world of a squat frame except perhaps the root. This is because each non-root
has a reflexive leaf among its successors, and a reflexive leaf must clearly vali-
date

∧
i<k(�pi ∨�¬pi) for any k > 1.

 3.3 Let I 6= ∅, and for each i ∈ I let Fi be a squat frame. We write∑
i∈I Fi for the squat frame consisting of a copy of each Fi (i ∈ I), the copies

being disjoint except that their roots are identified.
Formally, if Fi = (Wi, Ri) then

∑
i∈I Fi = (W,R), where W = (

⋃
i∈IWi ×

{i})/∼, the equivalence relation ∼ is given by (w, i) ∼ (w ′, i ′) iff (w, i) = (w ′, i ′)
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or w,w ′ are the roots of Fi,Fi ′ respectively, and

R = {((w, i)/∼, (w ′, i)/∼) : i ∈ I, Ri(w,w ′)},

where (w, i)/∼ denotes the ∼-class of (w, i). If I = {i1, . . . , im}, we write the
sum as Fi1 + · · ·+ Fim .

We will usually identify each non-root world w of each Fi with its ‘copy’
(w, i)/∼ in

∑
i∈I Fi.

 3.4 Let Fi (i ∈ I 6= ∅) be squat frames. For any k < ω, we have
∑
i∈I Fi |=

Mk iff Fi |= Mk for some i ∈ I.

Proof. Recall that M0 = > and Mk = ♦
∧
j<k(�pj ∨ �¬pj) for k > 1. The

result is trivial for M0. Let k > 1. Write ri for the root of Fi (each i), and r for
the root of F =

∑
i∈I Fi. Note that roots are by definition irreflexive. We will

use remark 3.2 without explicit mention. We write α =
∧
j<k(�pj ∨�¬pj), so

that Mk = ♦α.
⇒: If Fi 6|= Mk for each i ∈ I, then for each i there is an assignment hi into

Fi such that (Fi, hi), ri 6|= Mk. Let h be an assignment into F such that for each
i, h agrees with hi on the non-root worlds of Fi. Assume for contradiction that
(F, h), r |= Mk. Pick a successor s of r with (F, h), s |= α. Since r is irreflexive,
s 6= r. Suppose that s is in Fi, say. Then s ∈ Rrii , where Ri is the accessibility
relation of Fi. Now it is clear that the subframe of Fi based on {s} ∪ Rsi is a
generated subframe of both F and Fi. It follows that (Fi, hi), s |= α, and hence
(Fi, hi), ri |= Mk, contradicting the choice of hi. So (F, h), r 6|= Mk, and Mk is
not valid in F.
⇐: Suppose that i ∈ I and Fi |= Mk. Let h be any assignment into F. We

show that (F, h), r |= Mk. Let hi be the ‘restriction’ of h to Fi. By assumption,
(Fi, hi), ri |= Mk, so there is a successor s of ri in Fi with (Fi, hi), s |= α. By
definition of F, s is a successor of r in F. As before, (F, h), s |= α. So (F, h), r |=
Mk as required. �

3.2   
The following squat frames are modifications of frames used in [7] to prove
non-canonicity of M. We will use them to study the canonicity of KM∞.

 3.5 For each k, n < ω, we define Gkn to be the squat frame with
a root r, a set Lkn = k+n2 of leaves, and a set [Lkn]>2

n
= {Y ⊆ Lkn : |Y| > 2n} of

midpoints. See Figure 1. The accessibility relation R on Gkn is given by:

• Rr = [Lkn]>2
n ,

• Rs = s for each s ∈ [Lkn]>2
n ,

• Rx = {x} for each x ∈ Lkn.

Robert Goldblatt and Ian Hodkinson, “The McKinsey–Lemmon Logic is barely canonical”, Australasian Journal of Logic (5) 2007, 1–19

http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2007 8

Lkn = k+n2

[Lkn]>2
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Figure 1: The squat frame Gkn

Fix k < ω. The following lemmas determine which Ml (l < ω) are valid in
which Gkn.

 3.6 Gk0 validatesMl for every l < ω.

Proof. M0 = > is valid, so suppose l > 1. All singleton subsets of Lk0 are
midpoints of Gk0 . So each of these midpoints has a unique successor. But any
point with at most one successor validates

∧
i<l(�pi ∨ �¬pi). Since the root

sees all midpoints, Ml is valid at the root, and hence (remark 3.2) valid in Gk0 .
�

 3.7 For each n < ω,Mk is valid in Gkn.

Proof. Certainly, M0 is valid. Assume that k > 1. By remark 3.2, we only need
check that Mk is valid at the root. Let h : V → ℘(dom Gkn) be an arbitrary
assignment. Then h induces a partition of Lkn into at most 2k sets, namely, the
equivalence classes of the equivalence relation on Lkn given by x ∼ y iff x ∈
h(pi) ⇐⇒ y ∈ h(pi) for each i < k. Since |Lkn| = 2k+n, at least one partition
set s must have cardinality at least 2n, and so is in [Lkn]>2

n . Then (Gkn, h), s |=
�pi ∨ �¬pi for each i < k. As s is accessible from the root, we see that
(Gkn, h), r |= Mk. Since h was arbitrary, the proof is complete. �

 3.8 If n > 1 thenMk+1 is not valid in Gkn.

Proof. As n > 1, we may assign truth values to the variables p0, . . . , pk at points
in Lkn by: pi is true at η ∈ k+n2 iff η(i) = 1. Let s ⊆ Lkn and suppose that for
each i 6 k, pi has the same truth value on every element of s. Define ξ ∈ k+12

by: for each i 6 k, ξ(i) = 1 iff pi is true at every element of s. Then ξ = x�(k+1)
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for every x ∈ s. It follows that |s| 6 2k+n−(k+1) = 2n−1. As all midpoints of
Gkn have at least 2n elements, s cannot be in Gkn. So

∧
i6k(�pi ∨�¬pi) is false

at every midpoint in Gkn, and therefore Mk+1 is false at the root under this
assignment. �

Note that the accessibility relation of Gkn is not transitive. This is essential.
For as we mentioned in the introduction, Mk+1 ` Mk for all k, and any tran-
sitive frame validating M1 actually validates all the Mk. It follows that any
transitive frame validating Mk (for any k > 1) must also validate Mk+1. So
transitivity would violate the lemmas. They show that Mk 6` Mk+1. So in the
absence of transitivity, the Mk are strictly increasing in strength. It follows
easily that KM∞ is not finitely axiomatisable (Corollary 4.5 below).

 3.9 These results will show that the class of frames that validate
KM∞ is not closed under ultraproducts, thereby reproving Theorem 2.2. For
each n < ω, let Fn =

∑
k<ω Gkn. By Lemma 3.7, Gkn validates Mk for each k.

By Lemma 3.4, Fn also validates Mk for each k. Now consider a non-principal
ultraproduct F of the Fn. Every midpoint of Fn has at least 2n successors. By
standard saturation properties of ultraproducts, or by direct inspection, each
midpoint of F has 2ω successors, and | dom F| = 2ω as well. By Theorem 2.1, F

validates noMk for any k > 1. Our result now follows from the well known fact
that a class of structures is elementary iff it is closed under ultraproducts and
ultraroots. The same argument shows that for any k > 1, the class of frames
validatingMk is not closed under ultraproducts. Of course, these results follow
from Theorem 2.2, since the class of frames that validate a modal logic is always
closed under ultraroots.

3.3     
We wish to apply a result of the first author on inverse limits of families of
descriptive frames, so we will recall what these are.

 3.10 A general frame is a triple (W,R, P), where (W,R) is a Kripke
frame, and P ⊆ ℘(W) is non-empty and closed under intersection, complement,
and the map lR : S 7→ {x ∈W : ∀y(R(x, y)→ y ∈ S)} (for S ⊆W).

A general frame (W,R, P) is said to be a descriptive frame if

1. If x, y ∈W are distinct, then there is some S ∈ P with x ∈ S and y /∈ S.

2. If x, y ∈ W and ¬R(x, y), then there is some S ∈ P with x ∈ lR(S) and
y /∈ S.

3.
⋂
µ 6= ∅ for every ‘ultrafilter’ µ ⊆ P — i.e., a subset of P satisfying, for all

S, S ′ ∈ P, (i) S ′ ⊇ S ∈ µ ⇒ S ′ ∈ µ, (ii) S, S ′ ∈ µ ⇒ S ∩ S ′ ∈ µ, and (iii)
S ∈ µ ⇐⇒ (W \ S) /∈ µ.
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For information about descriptive frames, see, e.g., [8, §§1.9–1.11], [3, §8.4], and
[2, §5.5].

 3.11

1. If F = (W,R) is a Kripke frame, we write F+ for (W,R, ℘(W)). ([8, 1.3.5]
uses this notation in a different way.) Clearly, if F is finite (i.e., W is finite),
then F+ is a descriptive frame.

2. If F = (W,R, P) is a descriptive frame, we write F+ for its underlying
Kripke frame (W,R). (We will not use this notation for non-descriptive
general frames because it would clash with well known algebraic nota-
tion.)

 3.12 Let F = (W,R, P) be a general frame and φ a modal formula.
We say that φ is valid in F, written F |= φ, if (W,R, h), w |= φ for every assign-
ment h : V → P and every w ∈W.

Clearly, φ is valid in a Kripke frame F iff it is valid in the general frame F+:

F |= φ ⇐⇒ F+ |= φ. (5)

We will also need the notions of bounded morphism, frame homomorphism,
and inverse family.

 3.13 Recall that given frames F = (W,R) and F ′ = (W ′, R ′), a
map f : W →W ′ is said to be a bounded morphism from F to F ′ if for all w ∈W
and v ′ ∈W ′, we have R ′(f(w), v ′) iff there is v ∈ Rw with f(v) = v ′.

We remark that the generated subframes of a frame F are precisely the ranges
of bounded morphisms into F.

 3.14 [8,  1.5.1] Let F = (W,R, P) and F ′ = (W ′,

R ′, P ′) be general frames. We say that f : F → F ′ is a frame homomorphism if
f : (W,R)→ (W ′, R ′) is a bounded morphism and f−1[S ′] ∈ P for every S ′ ∈ P ′.

Clearly, if f : F → F ′ is a bounded morphism between Kripke frames, then
f : F+ → F ′+ is a frame homomorphism.

 3.15 [8,  1.11.1] An inverse family of descriptive frames
is an object

I =
(
(I,6), (Fi : i ∈ I), (fij : i > j in I)

)
,

where (I,6) is an upwards-directed partial order (‘upwards-directed’ means
that any finite subset of I has an upper bound in I), Fi = (Wi, Ri, Pi) is a de-
scriptive frame for each i ∈ I, and for each i, j ∈ I with i > j, fij : Fi → Fj
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is a frame homomorphism such that (a) fii is the identity map on Wi, and (b)
fjk ◦ fij = fik whenever k 6 j 6 i in I.

The inverse limit lim← I of I is defined to be F = (W,R, P), where

W = {x ∈
∏
i∈IWi : fij(xi) = xj for each i > j in I},

R = {(x, y) ∈W : Ri(xi, yi) for each i ∈ I},
P = {f−1i [S] : i ∈ I, S ∈ Pi}.

In the third line, for each i ∈ I, fi : W → Wi is the projection given by
fi(x) = xi.

The main fact we need about inverse limits is:

 3.16 [8, 1.11.2(8), 1.11.4] In the above notation, the inverse limit F of I is itself
a descriptive frame. Moreover, for any modal formula φ, if φ is valid in Fi for every
i ∈ I, thenφ is valid in F.

3.4      
We will now apply this to our squat frames Gkn.

 3.17 Let k < ω and n 6 m < ω. We define πkmn : dom Gkm →
dom Gkn as follows:

• It takes the root of Gkm to the root of Gkn.

• πkmn(x) = x�(k+ n) for each leaf x ∈ Lkm = k+m2.

• πkmn maps a set s ∈ [Lkm]>2
m to the set {πkmn(x) : x ∈ s}.

(It is clear that |πkmn(s)| > |s|/2m−n, so that indeed, πkmn(s) ∈ [Lkn]>2
n .)

 3.18 Let k < ω and n 6 m 6 l < ω. Then πkmn : Gkm → Gkn is a surjective
bounded morphism, πknn is the identity on dom Gkn, and πkln = πkmn ◦ πklm.

Proof. Straightforward. �

We need a little notation: if F,F ′,G,G ′ are squat frames and f : F → F ′, g : G→
G ′ are bounded morphisms taking roots to roots, then we define f+g : F+G→
F ′ + G ′ to be the map (clearly a well defined bounded morphism) taking the
root of F + G to the root of F ′ + G ′, and given on the remaining worlds x by

(f+ g)(x) =

{
f(x), if x ∈ dom F,

g(x), otherwise.

Until §4, fix k, l < ω. We will define two inverse families of descriptive frames
made from finite squat frames (for πkmn and −+ see definitions 3.17 and 3.11):
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1. Ik =
(
(ω,<), ((Gkn)+ : n < ω), (πkmn : n 6 m < ω)

)
,

2. Jk,l =
(
(ω,<), ((Gkn + Gl1)

+
: n < ω), (πkmn + ι : n 6 m < ω)

)
, where ι is

the identity map on dom Gl1.

The general frames here are descriptive frames because they are of the form
F+ for a finite Kripke frame F. We are interested in the inverse limits of these
families. For short, write

G∞ =
(

lim
←

(Ik)
)
+

F∞ =
(

lim
←

(Jk,l)
)
+

(6)

 3.19 F∞ ∼= G∞ + Gl1.

Proof. Let r be the root of F∞ and r ′ the root of G∞ + Gl1. By definition, for
η ∈ F∞ we have ηn ∈ dom(Gkn + Gl1) for each n < ω. Define

η ′ =


r ′, if η = r,

η, if η 6= r and ηn ∈ dom Gkn for each n < ω,
η0, if η 6= r and ηn ∈ dom Gl1 for each n < ω.

It can be checked that (η 7→ η ′) : F∞ → G∞ + Gl1 is well defined and is the
required isomorphism. �

F∞ is the underlying Kripke frame of the inverse limit of an inverse family of
descriptive frames whose underlying Kripke frames all validate Mmax(k,l) (by
Lemmas 3.7 and 3.4). Now k, l < ω are arbitrary, and it could be that k � l.
Nevertheless, and perhaps surprisingly, F∞ need not validate Mk. Indeed, we
will show that F∞ |= Ml but F∞ 6|= Ml+1.

This will be proved by showing that G∞ 6|= Mn for any n > 1. The proof
will need some technical lemmas. The first one is almost immediate from the
definition of G∞:

 3.20 G∞ is a squat frame with at most 2ω worlds.

Proof (sketch). The maps πknm take roots to roots, midpoints to midpoints, and
leaves to leaves. So each element in dom G∞ is a sequence in

∏
n<ω dom Gkn

consisting entirely of roots, entirely of midpoints, or entirely of reflexive leaves.
It is not so hard to see that such a sequence is a root, midpoint, or reflexive
leaf of G∞, respectively. (In particular, because the maps πkmn are bounded mor-
phisms, we can inductively construct a sequence of leaves that is a successor
in G∞ of any given sequence in G∞ consisting of midpoints. We will prove a
stronger result in Corollary 3.25 below.) It follows easily that G∞ is squat. Since
the Gkn are finite, | dom G∞| 6

∣∣∏
n<ω dom Gkn

∣∣ = 2ω. �
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The next fact we need — that each midpoint of G∞ has 2ω successors — is
a little harder to prove. Let G∞ = (W,R), say. Fix an arbitrary midpoint s =

(sn : n < ω) of G∞. So (i) each sn is a midpoint of Gkn, and (ii) πkmn(sm) = sn
whenever n 6 m. By the definitions, this says:

(i) sn ⊆ k+n2 and |sn| > 2n for each n < ω,

(ii) sn = {x�(k+ n) : x ∈ sm} whenever n 6 m < ω.

An element x = (xn : n < ω) of G∞ is a leaf of G∞ iff xn ∈ k+n2 for each n. In
this case, xn = xm�(k + n) for each n 6 m < ω, and x ∈ Rs iff xn ∈ sn for all
n.

 3.21 Let n < ω and x ∈ sn.

1. For n 6 m < ω, write sxm = {y ∈ sm : y�(k+ n) = x}.

2. For c < ω, we say that x is c-big if |sxm| > 2m−n−c for every m > n.

Since sxm ⊆ k+m2 and x ∈ k+n2, we see that

|sxm| 6 2m−n for any n 6 m < ω and x ∈ sn. (7)

Clearly,

sxl =
⋃

{s
y
l : y ∈ sxm}, whenever n 6 m 6 l < ω and x ∈ sn. (8)

Also note that ‘c-big’ gets weaker as c grows: any c-big element is (c+ 1)-big.

 3.22 If x ∈ sn is not c-big, then for all large enough l > n we have |sxl | <

2l−n−c.

Proof. By assumption, there is m > n such that |sxm| < 2m−n−c. Take any
l > m. By (7), |s

y
l | 6 2

l−m for each y ∈ sxm. So by (8), |sxl | 6 2
l−m · |sxm| <

2l−m · 2m−n−c = 2l−n−c. �

 3.23 There is some k-big x ∈ s0.

Proof. If not, then since s0 is finite, by the preceding lemma we may choose
large enough n < ω such that |sxn| < 2n−k for every x ∈ s0. Now s0 ⊆ k2, so
|s0| 6 2k. By (ii) above, sn =

⋃
{sxn : x ∈ s0}. Hence, |sn| < 2n−k · |s0| 6 2n,

contradicting (i) above. �

 3.24 For any n, c < ω and any c-big x ∈ sn, there is some m > n

such that sxm contains at least two c-big elements.
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Proof. By induction on c. If c = 0, then |sxm| > 2m−n for all m > n. But (cf.
(7)) we have sxm ⊆ {y ∈ k+m2 : y�(k + n) = x}, and the right-hand size has
cardinality 2m−n. So in fact,

sxm = {y ∈ k+m2 : y�(k+ n) = x} for all m > n. (9)

Now, for l > m > n and any y ∈ sxm, we have

s
y
l = {z ∈ sl : z�(k+m) = y} by definition of syl ,

= {z ∈ sxl : z�(k+m) = y} since y�(k+ n) = x,

= {z ∈ k+l2 : z�(k+m) = y} by (9).

So |s
y
l | = 2l−m, and hence every element of every sxm (m > n) is 0-big.

Suppose that 1 6 c < ω, and inductively assume the proposition for smaller
c. Let x ∈ sn be c-big. There are two cases.

Case 1: some element of
⋃

m≥n sx
m is (c − 1)-big. Suppose that m > n and y ∈

sxm is (c − 1)-big. By the inductive hypothesis, there is l > m such that syl
(and hence sxl ) contains at least two (c − 1)-big (and hence c-big) elements, as
required.
Case 2: otherwise. So x itself is not (c − 1)-big, and by Lemma 3.22 we may take
m > c + n such that |sxm| < 2m−n−(c−1). We show that there are at least two
c-big elements of sxm.
Assume for contradiction that sxm has at most one c-big element. By (ii) above,
sxm 6= ∅. So we may take y ∈ sxm such that sxm \ {y} contains no c-big elements.
By the case assumption, y is not (c − 1)-big. So using Lemma 3.22 repeatedly,
there is large enough l > m such that

|s
y
l | 6 2

l−m−c+1 − 1,

|szl | 6 2
l−m−c − 1 for all z ∈ sxm \ {y}.

Now by (8), sxl = s
y
l ∪

⋃
{szl : z ∈ sxm \ {y}}. We know that |sxm| < 2m−n−(c−1),

so
|sxm \ {y}| 6 2m−n−c+1 − 2.

Because x is c-big, we have |sxl | > 2
l−n−c. We conclude that

2l−n−c 6 |sxl |

6 |s
y
l | +

∑
z∈sxm\{y}

|szl |

6 2l−m−c+1 − 1+ (2m−n−c+1 − 2)(2l−m−c − 1)

= 2l−m−c+1 − 1+ 2l−n−2c+1 − 2l−m−c+1 − 2m−n−c+1 + 2

= 2l−n−2c+1 − 2m−n−c+1 + 1

< 2l−n−2c+1 (since m > c+ n, so m− n− c+ 1 > 1).

Hence l − n − c < l − n − 2c + 1, and so c < 1, contradicting our assumption.
So again, sxm has at least two c-big elements, as required.
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This completes the induction and the proof. �

 3.25 |Rs| > 2ω.

Proof. For each σ ∈ n2 (each n < ω), we will choose k-big σ̂ ∈ sm for some
m > n by induction on n, such that σ̂̂ 0, σ̂̂ 1 are distinct elements of sσ̂l for
some l > m. Here, we write σ̂ i for the map τ ∈ n+12 given by τ�n = σ and
τ(n) = i (for i = 0, 1).

We have 02 = {∅}. Let ∅̂ be any k-big element of s0; by Corollary 3.23, such
an element exists. Inductively, if k-big σ̂ ∈ sm has been chosen, by Proposi-
tion 3.24 we can choose l > m and distinct k-big σ̂̂ 0, σ̂̂ 1 ∈ sσ̂l .

Now, for each η ∈ ω2, {η̂�n : n < ω} generates a leaf λ(η) =
(
(η̂�n)�(k+n) :

n < ω
)
∈ Rs, and the λ(η) for distinct η are pairwise distinct. So λ : ω2 → Rs

is one-one, and hence |Rs| > 2ω. �

The corollary holds for any midpoint s of G∞. This completes our analysis of
the structure of G∞. The underlying ‘combinatorial principle’ we used is that
for any k < ω, any subtree of the infinite binary tree whose nth level has at
least 2n−k nodes, for each n, has 2ω branches.

It now follows that:

 3.26 G∞ 6|= Mn for every n > 1.

Proof. Let r be the root of G∞. Then Rr is the set of midpoints of G∞. By
Lemma 3.20 and Corollary 3.25, for any s ∈ Rr we have |Rr| + ω 6 2ω = |Rs|.
The result follows by Theorem 2.1. �

We can now prove what we wanted.

 3.27 F∞ |= Ml but F∞ 6|= Ml+1.

Proof. Recall from Lemma 3.19 that F∞ ∼= G∞ + Gl1. By Lemma 3.7, Gl1 |= Ml,
so by Lemma 3.4, F∞ |= Ml as well. By Proposition 3.26, G∞ 6|= Ml+1; and by
Lemma 3.8, Gl1 6|= Ml+1. So by Lemma 3.4, F∞ 6|= Ml+1. �

We summarise our conclusions in the following

 3.28 Let k, l < ω.

1. There is an inverse family Jk,l of finite descriptive frames validating Mmax(k,l),
such that if F∞ = (lim← Jk.l)+ is the underlying Kripke frame of the inverse
limit of Jk,l, then F∞ |= Ml but F∞ 6|= Ml+1.

2. There is a descriptive frame Dk,l = (W,R, P) with |P| = ω, such that Dk,l |=
Mmax(k,l), Dk,l+ |= Ml, and Dk,l+ 6|= Ml+1.
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Proof. The first part has already been established. For the second part, take
Dk,l = lim← Jk,l = (W,R, P), say. It is clear from Definition 3.15 that P is
countably infinite. By fact 3.16, Dk,l |= Mmax(k,l). The rest is as in the first
part. �

4    KM∞
A modal formula φ is said to be canonical if it is valid in the canonical frame of
the normal modal logic axiomatised by φ. The following is more convenient
here, and is well known to be equivalent to this:

 4.1 A modal formula φ is said to be countably d-persistent if when-
ever it is valid in a descriptive frame F = (W,R, P) with P countable, it is also
valid in its underlying Kripke frame F+.

 4.2 Any canonical formula is countably d-persistent, and conversely.

Proof (sketch). We only sketch the proof, because it is well known (see, e.g., [16,
p. 221]). We assume familiarity with canonical models; see [2, 3] or any modal
logic text for details. Write L for the set of all modal formulas written using
only propositional variables from our countable set V . Let F = (W,R, P)

be a descriptive frame such that P is countable, and suppose that φ ∈ L is
canonical and valid in F. Let Λ be the modal logic axiomatised by φ, and let
M = (W∗, R∗, h∗) be its canonical model — so W∗ is the set of all maximal
Λ-consistent subsets of L.

Since P is countable, we may choose a surjective assignment h : V → P. For
w ∈W, put Γw = {ψ ∈ L : (F, h), w |= ψ}. Since φ is valid in F, Λ is also valid in
F, and it follows that each Γw is maximal Λ-consistent (i.e., in W∗). Using that
F is a descriptive frame and that h is surjective, it can be checked that the map
f : W → W∗ given by f(w) = Γw is a one-one bounded morphism. Since φ is
assumed canonical, it is valid in (W∗, R∗), and so also in its generated subframe
based on rng f. But f is an isomorphism from (W,R) onto this. So φ is valid in
(W,R), as required.

Conversely, if φ is countably d-persistent then of course it is canonical, be-
cause the canonical model of the logic axiomatised by φ can be viewed as a
descriptive frame with countable ‘P’-part (namely, the truth sets of formulas in
L), and φ is valid in it. �

We can now prove our second main result. The case k = 1 was proved in [7].

 4.3 For no k > 1 isMk canonical.

Proof. Let k > 1; we prove that Mk is not countably d-persistent. For each n,
Gkn |= Mk by Lemma 3.7. By fact 3.16, lim← Ik |= Mk as well. By definition, the

‘P’-part of lim← Ik is countable. But by Proposition 3.26, (lim← Ik)+ = G∞ 6|=
Mk. �
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It follows that no Mk (k > 1) is d-persistent (this stronger notion is defined as
in Definition 4.1 but without the cardinality restriction).

To prove our third result, we want to use first-order compactness. To do
this, we view a general frame (W,R, P) as a first-order structure whose domain
is the disjoint union ofW and P, with unary relations picking outW and P, and
binary relations R ⊆ W ×W and ∈ ⊆ W × P interpreted in the natural way. It
is easy to write down a finite set ∆ of first-order sentences expressing that a
structure (W,R, P) for this signature is a general frame.

As is well known (see, e.g., [2, definition 2.45]), every modal formula φ
has a standard translation to a formula STx(φ) of first-order logic, with a free
variable x. We modify this here by regarding propositional variables as first-
order variables. For a propositional variable p, we define STx(p) to be x ∈ p. We
put STx(>) = >, etc., STx(φ∧ψ) = STx(φ) ∧ STx(ψ) and similarly for negation,
and STx(�φ) = ∀y(R(x, y) → STy(φ)) and STx(♦φ) = ∃y(R(x, y) ∧ STy(φ)).
Here, y is a new variable. For a formula φ(p1, . . . , pn), we write ST(φ) for the
universal closure ∀x ∈ W ∀p1 . . . pn ∈ P STx(φ). For a set X of formulas, we
write ST(X) for {ST(φ) : φ ∈ X}. Clearly, a modal formula φ is valid in a general
frame G iff ST(φ) is true in it in first-order semantics:

G |= φ ⇐⇒ G |= ST(φ). (10)

Hence (cf. (5)),φ is valid in a Kripke frame F iff ST(φ) is true in F+ in first-order
semantics:

F |= φ ⇐⇒ F+ |= ST(φ). (11)

With these preliminaries in hand, we can prove our third theorem.

 4.4 Any axiomatisation of the logicKM∞ has infinitely many non-canonical
axioms.

Proof. Suppose on the contrary that (without loss of generality) KM∞ is axioma-
tised by a single axiom B together with a set Σ of canonical formulas. Since
Σ ∪ {B} and {Mk : k < ω} axiomatise the same logic, the two first-order theo-
ries

∆ ∪ ST(Σ ∪ {B}),

∆ ∪ {ST(Mk) : k < ω}

have the same models. (Here, ∆ is as above.) Therefore, bearing in mind that
for m > n, Mm ` Mn and hence ∆ ∪ ST(Mm) |= ST(Mn), first-order compact-
ness yields:

(a) there is l < ω such that ∆ ∪ ST(Ml) |= ST(B),

(b) there is a finite subset X ⊆ Σ such that ∆ ∪ ST(X ∪ {B}) |= ST(Ml+1),

(c) there is finite k such that ∆ ∪ ST(Mk) |= ST(X). (Necessarily, k > l.)

Robert Goldblatt and Ian Hodkinson, “The McKinsey–Lemmon Logic is barely canonical”, Australasian Journal of Logic (5) 2007, 1–19

http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2007 18

Let D = Dk,l be the descriptive frame of Theorem 3.28(2). The ‘P ’-part of D is
countable, D |= Mmax(k,l), D+ |= Ml, and D+ 6|= Ml+1.

We have D |= Mk. Plainly, D |= ∆. Now, by (c) and (10), we obtain D |= X.
The formulas in X are assumed canonical, so by Lemma 4.2, D+ |= X as well. By
(11), (D+)+ |= ST(X).

As D+ |= Ml, (11) gives (D+)+ |= ST(Ml). Clearly, (D+)+ |= ∆. So by (a),
(D+)+ |= ST(B).

Now we have (D+)+ |= ∆ ∪ ST(X ∪ {B}), so by (b) and (11), we arrive at
D+ |= Ml+1, a contradiction. �

The following corollary follows immediately.

 4.5 KM∞ is not finitely axiomatisable.


[1] P. Balbiani, I. Shapirovsky, and V. Shehtman, Every world can see a

Sahlqvist world, Proc. Advances in Modal Logic (I. Hodkinson and
Y. Venema, eds.), vol. 6, 2006, to appear.

[2] P. Blackburn, M. de Rijke, and Y. Venema, Modal logic, Tracts in
Theoretical Computer Science, vol. 53, Cambridge University Press,
Cambridge, UK, 2001.

[3] A. Chagrov and M. Zakharyaschev, Modal logic, Oxford Logic Guides,
vol. 35, Clarendon Press, Oxford, 1997.

[4] K. Fine, Normal forms in modal logic, Notre Dame J. Formal Logic 16 (1975),
229–234.

[5] , Some connections between elementary and modal logic, Proc. 3rd
Scandinavian logic symposium, Uppsala, 1973 (S. Kanger, ed.), North
Holland, Amsterdam, 1975, pp. 15–31.

[6] R. Goldblatt, Metamathematics of modal logic, Ph.D. thesis, Victoria
University, Wellington, N.Z., February 1974, included in [8].

[7] , The McKinsey axiom is not canonical, J. Symbolic Logic 56 (1991),
554–562.

[8] , Mathematics of modality, Lecture notes, vol. 43, CSLI Publications,
Stanford, CA, 1993.

[9] , Mathematical modal logic: A view of its evolution, Handbook of the
History of Logic, Volume 7: Logic and the Modalities in the Twentieth
Century (Dov M. Gabbay and John Woods, eds.), Elsevier, 2006,
pp. 1–98.

Robert Goldblatt and Ian Hodkinson, “The McKinsey–Lemmon Logic is barely canonical”, Australasian Journal of Logic (5) 2007, 1–19

http://www.philosophy.unimelb.edu.au/ajl/2007
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2007 19

[10] R. Goldblatt, I. Hodkinson, and Y. Venema, On canonical modal logics that
are not elementarily determined, Logique et Analyse 181 (2003), 77–101,
published October 2004.
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