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Abstract: The expressive truth functions of two-valued logic have
all been characterized, as have the expressive unary truth functions
of finitely-many-valued logic. This paper introduces some tech-
niques for identifying expressive functions in three-valued logics.

1 
We are going to explore a property of truth functions known as “expressive-
ness.” Before subjecting readers to the long-winded explanation of what that
property is, I would like to indicate why the property is worth investigating.
Pick any n-valued sentential logic. Suppose p is a sentential variable. Con-

sider, for the moment, those sentences with occurrences of no sentential vari-
ables other than p. Call these the p-sentences. Let Dk be the set of p-sentences
that receive a designated value when p receives the value k. Dk is the set of
p-sentences that are true in some way when p is true or untrue in manner k.
Such a set is sometimes called a . Suppose, for any values k and j, that
Dk ⊆ Dj only if k = j. This means the theories D1, . . . ,Dn are pairwise dis-
tinct: Dk 6= Dj if k 6= j. It also means they are maximally satisfiable in the set
of p-sentences: ifφ is a p-sentence not inDk, then, nomatter what value p has,
some member of Dk ∪ {φ} will be untrue in some way. Since each p-sentence
has one of only nn possible truth tables, each theory Dk is finite modulo lo-
gical equivalence (i.e., modulo identity of truth tables). Take a representative
from each logical equivalence class and form new sets ∆1(p), . . . , ∆n(p) by
throwing out all the members of each Dk except any of those representatives
that might be present. (So each member of Dk is represented by exactly one
equivalent sentence in ∆k(p).)
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Now return to the full language of our logic. Given any sentence φ, form
the set ∆k(φ) by replacing every occurrence of p in every member of ∆k(p)

with an occurrence of φ. We can show that an interpretation will assign a
designated value to each member of ∆k(φ) if and only if it assigns k to φ.
That is, the members of ∆k(φ) jointly affirm that φ has value k. The right-left
direction is easy: an interpretation assigning k to φ will assign a designated
value to each member of ∆k(φ). Here is a proof of the converse. F(p) and
G(p) will be p-sentences. F(φ) will be the result of replacing each occurrence
of p in F(p) with an occurrence of φ. f will be the unary truth function whose
graph is the same as the truth table for F(p). M(φ)will be the value an arbitrary
interpretationM assigns to the sentenceφ. Now supposeG(p) ∈ Dk. Let F(p)
be the member of ∆k(p) equivalent to G(p). Then F(φ) ∈ ∆k(φ). Suppose
M assigns a designated value to each member of ∆k(φ). Then M(F(φ)) is
designated, as is f(M(φ)). So F(p) receives a designated value when p receives
the valueM(φ). That is, F(p) ∈ Dj where j = M(φ). So G(p) ∈ Dj. More
generally, Dk ⊆ Dj. So k = j = M(φ).
A key assumption here was that Dk ⊆ Dj only if k = j. We have seen that

if D1, . . . ,Dn have this property, if they are pairwise distinct and maximally
satisfiable in the set of p-sentences, then, for each value k and sentence φ,
we can use finitely many sentences to assert that φ has value k. Here are two
reasons to take an interest in this.
Forms of assertion and denial. Say that one denies a sentence when one at-

tributes some form of untruth to it. In assessing the expressive capacities of
some language, one might inquire about how many forms of denial it affords.
If D1, . . . ,Dn are distinct and maximally satisfiable, then a partial answer is,
“The language provides at least as many forms of denial as there are undesig-
nated values.” After all, to attribute an undesignated value j to a sentence φ,
one need only assert eachmember of∆j(φ). The same holds for forms of asser-
tion. One can affirm thatφ is true in some unspecified way by assertingφ. One
can affirm that φ is true in some particular way by asserting each member of
∆k(φ) for some designated k. Students of many-valued resolution might find
it helpful to recall the intended meaning of signed formulas or meta-language
literals. (See, for example, [1].) A literal pk is meant to assert that sentence p
has value k. IfD1, . . . ,Dn are distinct and maximally satisfiable, then the con-
tent of each such literal is captured by finitely many object-language sentences.
We now consider one reason this might be convenient.
Formalizability. Suppose we can translate each meta-language literal using

finitely many sentences of the object-language. Then a generalization of a well-
known algorithm yields a deductive system that is sound and complete with
respect to our logic. Beall and van Fraassen [2, pp. 182–185] provide a nice
exposition. (See also [3] and [8].) They presuppose, for each value k, a predicate
Fk such that Fk(φ) receives a designated value in an interpretation if and only
if φ receives the value k in that interpretation. That is, they assume there is a
single sentence announcing thatφ has value k. It presents no problem, though,
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if several (but still only finitely many) sentences are needed to disclose the value
of φ. A few easy modifications allow us to use the members of ∆k(φ) in place
of the sentence Fk(φ).
Now what does this have to do with expressiveness? Suppose f is an n-

valued truth function with our (as yet undefined) property: suppose f is ex-
pressive. Actually, “expressive” is shorthand for “expressive with respect to a
set of designated values.” So suppose f is expressive with respect to the desig-
nated values of our logic. Suppose, further, that the graph of f is the same as the
truth table of some sentence in our logic. If f is unary, thenD1, . . . ,Dn will be
maximally satisfiable in the set of p-sentences and, as long as D1, . . . ,Dn are
pairwise distinct, our logic will have the nice properties just discussed. This
is the case no matter what n is. (See Theorem 4.3 of [8].) But suppose now
that n = 3, our values being 1, 2, and 3 with just 1 designated. Suppose f is
expressive with respect to {1}. If f(1 . . . 1) 6= 1, then, again, D1, . . . ,Dn will
be maximally satisfiable in the set of p-sentences and, as long as D1, . . . ,Dn

are all distinct, our logic will have the nice properties just discussed. (See The-
orem 6 below.) There are various results of this sort. The general idea is that
we can confirm that a logic has certain desirable properties (say, an elegant
formalization with a straightforward Henkin-style completeness proof ) if we
can show that an expressive function of one kind or another is definable in
the logic. This makes it desirable to have techniques for identifying expressive
functions.

2  
Since expressiveness began life as a property of closure spaces, it will be helpful
to review a bit of closure space theory. Pick some universe of discourse S.
A   C on this universe is a set of subsets of S closed under
intersection. That is,

⋂
W ∈ C whenever W ⊆ C (letting

⋂
∅ = S). The

members of C are known as the  . A subset W of C 
a closed set B if and only if B =

⋂
W. B is  if and only if it is

reduced by some subset of C \ {B}. If A ⊆ S, then Cl(A), the  of
A, is the intersection of all the members of C that contain A. In a 
closure space, if x ∈ S andA ⊆ S, then x will belong to Cl(A) only if it belongs
to the closure of some finite subset of A. If B ∈ C, then B is 
 if and only if B sits just below S in the lattice of closed sets: that
is, S is the only member of C that properly contains B.
Now, at last, we come to our first definition of expressiveness. A finitary

closure space is  if and only if all its irreducible sets are maximally
consistent. (There is a more general definition that applies to non-finitary
closure spaces, but we can make do with the simpler, more restricted version
since we consider only finitary logics. For the more general version, see [5,
p. 121].)
Return, now, to n-valued logic. Say that a sentence φ is a 
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of a set of sentences A if and only if every interpretation assigning a desig-
nated value to each member of A also assigns a designated value to φ. Let C
consist of the sets of sentences closed under consequence. (Those sets whose
consequences are already members.) Then C is a finitary closure space. (See [9,
pp. 142–144]; [10, 11].) For each interpretation M, let the  DM be the
set of sentences assigned a designated value by M. Each irreducible set is a
theory. (S, the set of all sentences, is reducible because S =

⋂
∅. Every other

closed set is the intersection of the theories that contain it.) So C is expressive
if and only if each of its irreducible theories is maximally consistent. We are
interested in the circumstances under which this occurs. In particular, we are
interested in whether the definability of certain truth functions might guaran-
tee expressiveness.

3  
Suppose our logic is two-valued. Suppose the function g returns a T when
we feed it nothing but F’s and returns F for at least one sequence of inputs.
Say, for example, that g(FFFF) = T and g(TFFT) = F. Suppose there is a
sentence θ in our language whose truth table is exactly the graph of g. So
θ(φψψφ) is T when φ and ψ are both F, while θ(φψψφ) is F when φ is T and
ψ is F. Then we can show that our logic has a property a bit stronger than
expressiveness: each of its consistent theories (each of its theories other than
S) is maximally consistent. To confirm this, supposeDM 6= S. IfM assigns F to
only one sentence, thenDM is maximally consistent and we are done. Suppose
M assigns F to at least two sentences. SupposeDN properly containsDM. Let
φ be a sentence that M considers false but N considers true. Let ψ be any
other sentence that M considers false. Then M thinks θ(φψψφ) is true. N
thinks a sentence is true wheneverM thinks it is true. So N thinks θ(φψψφ)

is true. But this meansN cannot think ψ is false. ψ was an arbitrary falsehood
ofM. So N thinks all ofM’s falsehoods are truths. So N thinks everything is
true. That is, DN = S. So S is the only theory that properly contains DM.
So S is the only closed set that properly contains DM. So DM is maximally
consistent.
Every two-valued logic with a sentence expressing g is expressive. This

leads us to say that g itself is expressive in the sense of “expressiveness guar-
anteeing” or “expressiveness producing.” To be pedantic, g is expressive with
respect to the choice of {T } as the set of designated values (a qualification that
can be omitted without fear of confusion in the two-valued case). We are in-
terested in characterizing expressive n-valued truth functions in general. The
two-valued ones have all been characterized [7], as have all the unary ones for
each choice of n [8]. We are going to investigate some of the remaining func-
tions, with special emphasis on the three-valued ones. First, however, a brief
detour that will further motivate this project.
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4 
Intuitionist and classical connectives do not always mix well. If you have a
million connectives obeying the rules for intuitionist negation and even one of
them satisfies the classical principle of double negation elimination, then they
all do. If you have a million connectives obeying the rules for the intuitionist
conditional and even one of them satisfies Peirce’s law, then they all do. Our in-
vestigations into expressive functions help us to identify deductive properties
that give connectives this power of assimilation.
For example, there is an algorithm that takes us from the truth table for

an expressive two-valued function like g to a pair of sequents that will “de-
intuitionize” each intuitionist conditional and negation. To see an example of
how this works, consider again our two-valued logic and our function g. We
first introduce a new connective � with the stipulation that M(φ � ψ) =

g(M(φ)M(ψ)M(ψ)M(φ)). If A and B are sets of sentences, we say that
A |= B if and only if B intersects each theory that contains A. (That is, an
interpretation assigning T to each member of A will assign T to at least one
member of B.) Then we can verify the following.

• {φ, (φ�ψ)} |= {ψ}

• ∅ |= {φ,ψ, (φ�ψ)}

Now go to any deductive system featuring the corresponding sequents.

• φ, (φ�ψ) ` ψ

• ` φ,ψ, (φ�ψ)

Suppose this system also features a connective ¬ obeying the intuitionistically
valid principle that ψ1, . . . , ψk ` ¬φ whenever φ,ψ1, . . ., ψk ` ¬φ. Then we
can argue as follows.

1. φ, (φ� ¬φ) ` ¬φ

2. (φ� ¬φ) ` ¬φ

3. ` φ, ¬φ, (φ� ¬φ)

4. ` φ, ¬φ

Since this last line is a version of excluded middle, we see that � has assimil-
ated or “de-intuitionized” ¬. � has a similar effect on any connective satisfy-
ing modus ponens and the deduction theorem. This means that anyone who
wants to speak an intuitionist language and a language expressing g will have
to prevent the latter from infiltrating the former. This holds for any expressive
two-valued truth function.
Things are just a bit more complicated when we add more truth-values.

Here is an example. Go to a three-valued logic where 2 and 3 are designated,
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but 1 is not. Suppose the function h has a matrix of the following form. (The
idea is that an empty cell can be filled by any value drawn from {1, 2, 3}.)

3 2 −

− 3 −

1 − −

This means that h(11) = h(22) = 3, h(12) = 2, and h(31) = 1. Introduce the
connective ? with the stipulation thatM(φ ? ψ) = h(M(φ)M(ψ)). It turns
out that h is expressive. One proof of this draws attention to the following
facts.

• {φ, (φ ?ψ), (((ψ ? φ) ? φ) ?ψ)} |= {ψ}

• ∅ |= {φ,ψ, (φ ?ψ)}

• ∅ |= {φ,ψ, (((ψ ? φ) ? φ) ?ψ)}

As before, go to any deductive system featuring the corresponding sequents.

• φ, (φ ?ψ), (((ψ ? φ) ? φ) ?ψ) ` ψ

• ` φ,ψ, (φ ?ψ)

• ` φ,ψ, (((ψ ? φ) ? φ) ?ψ)

Suppose we encounter a connective ¬ behaving as above. (ψ1, . . . , ψk ` ¬φ

whenever φ,ψ1, . . . , ψk ` ¬φ.) Then we can argue as follows.

1. φ, (φ ? ¬φ), (((¬φ ? φ) ? φ) ? ¬φ) ` ¬φ

2. (φ ? ¬φ), (((¬φ ? φ) ? φ) ? ¬φ) ` ¬φ

3. ` φ,¬φ, (φ ? ¬φ)

4. (((¬φ ? φ) ? φ) ? ¬φ) ` φ,¬φ

5. ` φ,¬φ, (((¬φ ? φ) ? φ) ? ¬φ)

6. ` φ,¬φ

So h is an assimilator and anyone wishing to speak an intuitionist language
and a language expressing h will have to prevent the latter from infiltrating
the former. All expressive functions are assimilators. (See [5, pp. 161–162 and
203], and [6, pp. 122–124].) When we identify expressive functions, we identify
logical notions that would-be intuitionists need to keep carefully at bay. This
is yet another reason to take an interest in these functions.
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5  
We now define our terms with greater care and proceed to some results. A
-  is a quadruple 〈D,L,CON, \〉 where D (the set of des-
ignated values) is a non-empty proper subset of {1, 2, 3}, L is a non-empty set of
variables, CON is a non-empty set of connectives, and \ is an operator that as-
signs a member of {1, 2, 3} to each 0-ary member ofCON and assigns a function
f : {1, 2, 3}k → {1, 2, 3} to each k-ary member of CON when k > 0. The sen-
tences of such a logic are the members of L, the 0-ary members of CON, and
any expressions F(φ1, . . . , φk) where φ1, . . . , φk are sentences and F is a k-ary
member of CON. An  is any homomorphism that assigns
members of {1,2,3} to sentences. That is, if M is an interpretation in a logic
〈D,L,CON, \〉, then M(F(φ1, . . . , φk)) = F\(M(φ1) . . .M(φk)) whenever
φ1, . . . , φk are sentences and F is a k-ary member of CON. If p1, . . . , pk are
variables and ψ(p1, . . . , pk) is a sentence, then ψ(p1, . . . , pk)  the
function f : {1, 2, 3}k → {1, 2, 3} in a logic if and only ifM(ψ(p1, . . . , pk)) =

f(M(p1) . . .M(pk)) for every interpretation M in that logic. A logic -
 a truth function if and only if one of its sentences does. We also
say that a connective F expresses the function F\.
Given any logic and any of its interpretations M, we let the  DM

be the set of sentences assigned a designated value byM. DM is 
if and only if there are sentences that do not belong to DM. A theory is -
  if and only if it is consistent but is not a proper subset
of any consistent theory. A set of sentences is  if and only if it is a
subset of some theory. A theory is   if and only if it is
not a proper subset of any theory. (If every theory is consistent, then maximal
consistency is equivalent to maximal satisfiability.) A theory is  if
and only if it is the intersection of theories distinct from itself. If S is the set of
all our sentences, we let

⋂
∅=S. So any inconsistent theory would be reducible

(since it would be the result of applying
⋂
to the empty set of theories). A logic

is expressive if and only if all its irreducible theories are maximally consistent.
Say that a D- is one whose set of designated values is D. A truth

function isD- if and only if everyD-logic that expresses the func-
tion is expressive. Unlike properties such as functional completeness, the ex-
pressiveness of a function can depend on our choice of designated values.
If a logic has just one variable, we adopt a special notation for its interpret-

ations and theories. We letMi be the interpretation that assigns truth-value
i to the one variable. We let Di be the set of sentences assigned a designated
value byMi.
We now establish four lemmas that apply to any finitely-many-valued logics

(not just the three-valued ones).

 1 If k /∈ D and f(k . . . k) = k, then f is notD-expressive.

Proof: To say that f is not D-expressive is to say that some non-expressive
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D-logic expresses f. We need just one example, the simpler the better. So
consider a logic with just one variable p and three connectives F, G, andH. Let
F express f. We assume that k /∈ D and f(k . . . k) = k. LetG express a function
that returns k for every input. Let H express a function that returns k when
given a k, but otherwise returns a designated value. Then Mk assigns k to
every sentence. SoDk is empty. If i is any value other than k, then H(p) ∈ Di.
Every theory is consistent, since G(p) does not belong to any theory. So Dk is
irreducible but not maximally consistent.

 2 If f(i . . . j) ∈ D only if at least one of i, . . . , j belongs to D, then f is not
D-expressive.

Proof: Again, we only need one example of a non-expressive D-logic that ex-
presses f. Consider a logic with just one variable p and two connectives F and
G. Let F express a function f that returns a designated value only when at
least one of its inputs is designated. Let G express a function g such that g(j)
is undesignated for every input j. Pick any undesignated value k. Then Mk

assigns an undesignated value to every sentence. (Proof: an easy induction on
the complexity of sentences. Our assumption about f justifies the step from
“φ1, . . . , φm are all undesignated” to “F(φ1, . . . , φm) is undesignated.”) SoDk

is empty whenever k is undesignated. On the other hand, p belongs to Dj

whenever j is designated. Every theory is consistent, since G(p) does not be-
long to any theory. So if k is undesignated,Dk is irreducible but not maximally
consistent.

 3 If f(i . . . j) ∈ D whenever at least one of i . . . j belongs to D, then f is not
D-expressive.

Proof: Once again, we describe a simple non-expressive logic with a connective
expressing an f of the indicated sort. Consider a logic with just one variable
p and two connectives F and G. Let F express a function f that returns a des-
ignated value whenever it receives at least one designated input. G is to be a
0-ary connective (that is, an individual constant). Pick any undesignated value
k and letMj(G) = k for every value j. If i is designated, then every sentence
in which p occurs belongs to Di. A sentence in which p does not occur will
belong to every theory or to none. So Di = Dj whenever i and j are both
designated. Furthermore, Di ⊂ Dj whenever j is designated but i is not. (We
get proper containment, ⊂ rather than ⊆, because p ∈ Dj if and only if j is
designated.) Every theory is consistent, since G does not belong to any the-
ory. So if i is undesignated and Di is not a proper subset of any Dj where j is
undesignated, then Di is irreducible but not maximally consistent.
From now on, the setsDi are understood to be the theories of a logic with

just one variable p and one connective expressing the function f. The idea
will be that inspection of these simple logics allows us to tell whether certain
functions are expressive.
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 4 If Dj ∪ {p} is unsatisfiable whenever j /∈ D, then every theory in every
D-logic that expresses fwill be maximally consistent.

Proof: We consider a logic whose vocabulary includes p and F, the latter ex-
pressing f. We want to show that an arbitrary theory DM is maximally con-
sistent. Suppose φ /∈ DM. Let M(φ) = j where j is undesignated. For any
sentence θ, let θ(p/φ) be the result of replacing every occurrence of p in θ
with an occurrence of φ. Then θ(p/φ) ∈ DM whenever θ ∈ Dj. Suppose
DM ∪ {φ} ⊆ DN. Let N(φ) = k where k is designated. Pick θ ∈ Dj. Then
θ(p/φ) ∈ DN. So θ ∈ Dk. More generally, Dj ∪ {p} ⊆ Dk. Suppose Dj ∪ {p}

is unsatisfiable whenever j /∈ D. Then DM ∪ {φ} is unsatisfiable whenever
φ /∈ DM. So DM is not a proper subset of any theory. Suppose DM is in-
consistent. Then Dk is inconsistent ifM(p) = k. But this would mean that
Dj ∪ {p} is always satisfiable, contrary to our hypothesis. So DM must be con-
sistent.

6  - 
The rest of this paper focuses on three-valued logics. Let α(k) = f(k . . . k)

for each value k. Let αm+1 = α ◦ αm where α0 is the identity function.
The function α has   if and only if α(k) = k for some value k.
Lemma 1 says that k is not a fixed point if f is D-expressive and k /∈ D. If
α(1) = i, α(2) = j, and α(3) = k, then we say α = ijk (that is, we identify α
by listing its outputs). There are eight unary functions α : {1, 2, 3} → {1, 2, 3}

with no fixed points. They are: 211, 212, 231, 232, 311, 312, 331, 332. If α
is D-expressive, then so is f (since every logic that expresses f expresses α).
So it is worthwhile to identify the expressive α’s. This work has already been
done [8, p. 100]. Here are the results. The two derangements 231 and 312
guarantee that every theory is maximally consistent no matter what D is. 211
and 311 guarantee that every theory is maximally consistent if D is either {1}

or {2, 3}. If D is either {1} or {2, 3}, then the four remaining functions are not
D-expressive.
We turn now to techniques that allow us to identify expressive f’s even

when the corresponding α’s are not expressive.

 5 If α has no fixed points and f(j . . . k) = 1 for some m-tuple (j . . . k) ∈
{2, 3}m, then neitherD2 ⊂ D3 norD3 ⊂ D2 when D is either {1} or {2, 3}.

Proof: Suppose α(1) = 3. (The argument is the same if α(1) = 2.) If α(2) = 1,
then α is either 311 or 312 and we are done (since, by the result mentioned
just above, D2 and D3 are maximally consistent). Suppose α(2) = 3. α(3) is
either 1 or 2. If the former, then we are done, since α2(2) = α(3) = 1 and
α2(3) = 3 = α(2). (Note that if D = {1}, then D2 is not a subset of D3 since
α2(2) = 1 and α2(3) = 3, while D3 is not a subset of D2 since α(3) = 1 and
α(2) = 3. Similar reasoning applies if D = {2, 3}.) Suppose α(3) = 2. Then
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we can define a binary function g such that g(23) = 1 while g(33) = 2 and
g(22) = 3. (For example, if f(22323) = 1, we let g(jk) = f(jjkjk).) Let h(k) =

g(kα(k)). If h(3) = 3, then we are done, since h(2) = 1 while h(α(3)) = 1

and h(α(2)) = 3. Suppose h(3) is 1 or 2. Then g(2α(h(2))) = g(23) = 1 and
g(3α(h(3))) = g(33) = 2. So D2 is not a subset of D3 if D = {1}, while D3 is
not a subset of D2 if D = {2, 3}. Furthermore, g(α2(h(3))3) = g(23) = 1 and
g(α2(h(2))2) = g(22) = 3. So D3 is not a subset of D2 if D = {1}, whileD2 is
not a subset of D3 if D = {2, 3}.

 6 If 1 is not a fixed point and f is {1}-expressive, then every theory in every
{1}-logic that expresses f is maximally consistent.

Proof: Lemmas 1 and 2 imply that f satisfies the conditions of Lemma 5. SoD2

and D3 are irreducible and, hence, are maximally consistent. D1 is consistent
since f(1 . . . 1) 6= 1. So D2 ∪ {p} and D3 ∪ {p} are unsatisfiable. Now apply
Lemma 4.
In an expressive logic, every irreducible theory is maximally consistent. If

a {1}-logic expresses a function satisfying the conditions of Theorem 6, all its
theories are both irreducible and maximally consistent.
Here is another way to think about Theorem 6. Let the expresssionA |= B

mean that B intersects every theory that contains A. That is, every interpret-
ation that assigns a designated value to every member of A will assign a desig-
nated value to at least one member of B. Call this situation an .
Go to any single-variable {1}-logic in which all three of the Di’s are maximally
consistent. We can pick a sentence θ2(p) that belongs to D2 but not to D1.
We can also pick a sentence θ3(p) that belongs to D3 but not to D1. This
yields the following entailments.

• ∅ |= {p, θ2(p), θ3(p)}

• {p, θ2(p)} |= ∅

• {p, θ3(p)} |= ∅

We can generalize this beyond the single-variable case. Suppose that f is {1}-
expressive and that f(1 . . . 1) 6= 1. This guarantees the maximal consistency of
the threeDi’s in the single-variable logic for f. So we can find θ2(p) and θ3(p)

as above. Now let φ be any sentence in any {1}-logic expressing f. Let θ2(φ)

and θ3(φ) be the result of replacing every occurrence of p in θ2(p) and θ3(p)

with an occurrence of φ. Then we obtain the following entailments.

• ∅ |= {φ, θ2(φ), θ3(φ)}

• {φ, θ2(φ)} |= ∅

• {φ, θ3(φ)} |= ∅
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Pick any theory DM. If φ is not a member of DM, either θ2(φ) or θ3(φ)

will be a member. In either case, DM ∪ {φ} will be unsatisfiable. So DM is
maximally consistent if it is consistent. Since f(1 . . . 1) 6= 1,M cannot assign 1
to every sentence. So DM is consistent.
Let us consider a particularly simple case where we can let θ2(φ)=θ3(φ).

Suppose f is a binary function of the following form.

2 − 1

− 1 −

− − 2

Note that f(α2(2)2) = f(α2(3)3) = 1 while f(α2(1)1) = 2. So, if F expresses f
and A expresses α in some {1}-logic, we have the following entailments.

• ∅ |= {φ, F(A(A(φ))φ)}

• {φ, F(A(A(φ))φ)} |= ∅

F(A(A(φ))φ) behaves like the classical negation of φ. This allows us to show
that every theory in a {1}-logic that expresses f will be maximally consistent.
If we let 1 be our only undesignated value (if we let D = {2, 3}), each en-

tailment is replaced by its dual. So in place of the above entailments we would
have the following.

• {φ, F(A(A(φ))φ)} |= ∅

• ∅ |= {φ, F(A(A(φ))φ)}

Since these are the very entailments we had before, it is especially obvious in
this case that the dual entailments force every theory to be maximally consist-
ent. More generally, if f : {1, 2, 3}k → {1, 2, 3} is {1}-expressive, f(1 . . . 1) 6= 1,
and φ is any sentence in a {2, 3}-logic that expresses f, then there are sentences
θ2(φ) and θ3(φ) with the following properties in that {2, 3}-logic.

• {φ, θ2(φ), θ3(φ)} |= ∅

• ∅ |= {φ, θ2(φ)}

• ∅ |= {φ, θ3(φ)}

If φ is not a member of the theory DM, both θ2(φ) and θ3(φ) are members
andDM∪{φ} is unsatisfiable. SoDM is maximally consistent if it is consistent.
Since {φ, θ2(φ),θ3(φ)} is unsatisfiable, M cannot assign a designated value to
every sentence. So DM is consistent. This confirms the following result.

 7 If 1 is not a fixed point, then f is {1}-expressive only if every theory in
every {2, 3}-logic that expresses f is maximally consistent.
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Now suppose D = {2, 3}. Then p ∈ (D2 ∩ D3), but p /∈ D1. So D1 is
irreducible, as areD2 andD3 if they are consistent. This means that ifD2 and
D3 are consistent, the following are equivalent.

• f is {2, 3}-expressive.

• D1, D2, and D3 are maximally consistent.

• Every theory in every {2, 3}-logic that expresses f is maximally consistent.

The following theorem holds because its hypothesis identifies a sufficient (and,
in fact, necessary) condition for the consistency of D2 and D3.

 8 If neither 2 nor 3 is a fixed point and f(j . . . k) = 1 for some m-tuple
(j . . . k) ∈ {2, 3}m, then f is {2, 3}-expressive only if every theory in every 2, 3-logic
that expresses f is maximally consistent.

We can apply reasoning about entailments to obtain the following.

 9 If α has no fixed points and f(j . . . k) = 1 for somem-tuple (j . . . k) ∈
{2, 3}m, then f is {1}-expressive if and only if f is {2, 3}-expressive.

7  
Given any function f : {1, 2, 3}k → {1, 2, 3} such that f(1 . . . 1) 6= 1, there
is a mechanical (though not particularly elegant) way to test whether f is {1}-
expressive. Lemma 1 says that f is not {1}-expressive if either 2 or 3 is a fixed
point of α. So we first confirm that f(2 . . . 2) 6= 2 and f(3 . . . 3) 6= 3. If f passes
this test, we check whether f returns 1 in response to at least one k-tuple of
2’s and 3’s. If f does not do so, if it returns 1 only when we feed it at least
one 1, then, by Lemma 2, f is not {1}-expressive. If, on the other hand, f does
pass this test, then we have more work to do. If neither D2 nor D3 is a sub-
set of D1, then Lemma 4 implies that f is {1}-expressive. So we should check
whether D2 and D3 each have members absent from D1. To do so, we first
list all the unary functions definable from f by composition. Here is one way
to accomplish that. We go to a logic with just one variable and one connective,
the latter expressing f. We start listing sentences in order of complexity, keep-
ing track of the function expressed by each sentence. Since there are only 27
unary functions in a three-valued logic, there must be a j such that every unary
function is defined by a sentence of complexity less than j. How do we know
when we have reached this upper bound? Well, since an upper bound exists,
we will eventually encounter a run of complexities from j to j × k where no
new functions are expressed. That is, we will reach a complexity j such that
each function expressed by a sentence of complexity less than j × k is already
expressed by a sentence of complexity less than j. We can then show that no
new function will be expressed by a sentence of higher complexity. (Induction
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step: if φ1, . . . , φk are each equivalent to a sentence of complexity less than j,
then F(φ1, . . . , φk) is equivalent to a sentence of complexity less than j × k.)
Now that we have listed all the unary functions definable from f by composi-
tion, we need to conduct two searches to determine whether the theories D2

and D3 are subsets of D1.

• We search our list for a function g such that g(2) = 1 but g(1) 6= 1.

• We search our list for a function h such that h(3) = 1 but h(1) 6= 1.

If each of our searches is successful (if we manage to show that D2 and D3

are not subsets of D1), then, by Lemma 4, f is {1}-expressive. Otherwise, by
Theorem 6, it is not.
Here is an example. Suppose f is the following binary function.

2 1 2

1 1 3

2 3 2

We determine by inspection that the diagonal function α has no fixed points
and that there is an ordered pair of 2’s and 3’s that causes f to return a 1. (In
particular, f(22) = 1.) We then list the unary functions definable from f.

α0 α1 α2 f(α0α1) f(α1α2) α1f(α0α1)

1 1 2 1 1 1 2

2 2 1 2 1 1 2

3 3 2 1 3 1 2

There is no function h on our list such that h(3) = 1 but h(1) 6= 1. So in a
logic with just one variable and one connective expressing f, D3 would not be
maximally consistent. So f is not {1}-expressive.
There are 729 binary functions whose diagonal values α(j) are 212. Using

our algorithm (and a variety of short-cuts), we can establish that exactly 713
of them are {1}-expressive. Theorem 9 implies that these functions are also
the {2, 3}-expressive ones. By permuting the values 2 and 3, we obtain the {1}-
expressive and {2, 3}-expressive binary functions whose diagonal values are 331.
There are 729 binary functions whose diagonal values α(j) are 332. Using

our algorithm (and a variety of short-cuts), we can establish that exactly 398 of
them are {1}-expressive. Theorem 7 implies that all 398 are {2, 3}-expressive.
But there are more: an additional 255 are {2, 3}-expressive. We now consider a
technique for identifying these functions.
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8  
Suppose we find sentences θ(φψ) and θ∗(φψ) with truth tables of the follow-
ing form.

φ ψ θ(φψ) θ∗(φψ)

1 1 2 or 3 2 or 3
2 1 1 −

3 1 − 1

Then the following entailments will hold when D = {2, 3}.

• ∅ |= {φ,ψ, θ(φψ)}

• ∅ |= {φ,ψ, θ∗(φψ)}

• {φ, θ(φψ), θ∗(φψ)} |= {ψ}

These entailments guarantee that every consistent theory is maximally con-
sistent. For suppose DM is consistent but not maximally consistent. There
must be at least two sentences φ and ψ that do not belong to DM. θ(φψ)

and θ∗(φψ) will belong toDM. So ψ will belong to every theory that contains
DM ∪ {φ}. ψ could have been any sentence not in DM. So every non-member
of DM will belong to every theory that contains DM ∪ {φ}. So no consistent
theory will contain DM ∪ {φ} and DM must be maximally consistent after all.
To see how this works in particular cases, let f be a binary function of the

following form.
3 − −

1 3 −

2 − 2

If F expresses f and A expresses α, we have the following assignments.

φ ψ F(φψ) F(A(φ)ψ)

1 1 3 2

2 1 1 2

3 1 2 1

So the following entailments will hold when D = {2, 3}.

• ∅ |= {φ,ψ, F(φψ)}

• ∅ |= {φ,ψ, F(A(φ)ψ)}

• {φ, F(φψ), F(A(φ)ψ)} |= {ψ}
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Since these entailments guarantee that every consistent theory is maximally
consistent, f is {2, 3}-expressive.
Using this technique, we can show that 653 binary functions with diagonal

values 332 are {2, 3}-expressive. Lemma 3 implies that 64 of the remaining 76
are not {2, 3}-expressive. Theorem 9 guarantees that an additional seven are
not {2, 3}-expressive. Here are the five that are left.

3 3 1

3 3 2

1 2 2

3 3 1

3 3 2

2 2 2

3 3 1

3 3 2

3 3 2

3 3 2

3 3 2

1 2 2

3 3 3

3 3 3

1 2 2

How do we show that these functions are not {2, 3}-expressive?
Consider a logic with just two variables p and q and two connectives F and

G. LetMjk be the interpretation that assigns j to p and k to q. LetDjk be the
set of sentences assigned a designated value byMjk. Suppose F expresses one
of our five functions. Let G express the following function.

1 2 3

2 2 3

3 3 3

Then we can show: M11(θ) = 1 only if M21(θ) 6= 3; M11(θ) = 2 only if
M21(θ) = 2;M11(θ) = 3 only ifM21(θ) = 3. So D11 ⊂ D21. Furthermore,
D11 ⊂ D12. But D11 6= (D12 ∩ D21), since G(pq) ∈ (D12 ∩ D21) while
G(pq) /∈ D11. F(pq) and F(qp) preventD11 from being a subset of eitherD13

orD31. D22,D23,D32, andD33 are all inconsistent. SoD11 is irreducible and
our function is not {2, 3}-expressive.
We can now tally up the D-expressive binary functions f where α has no

fixed points and D is either {1} or {2, 3}. We include a column giving the num-
ber of Sheffer (that is, functionally complete) functions [4].

α {1}-expressive {2, 3}-expressive Sheffer

211 729 729 389

212 713 713 389

231 729 729 720

232 398 653 389

311 729 729 389

312 729 729 720

331 713 713 389

332 398 653 389

Total 5138 5648 3774
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If we consider functions with fixed points, we find an additional 2222 {1}-
expressive binary functions (for a total of 7360) and an additional 6356 {2, 3}-
expressive binary functions (for a total of 12004). Readers will here be spared
the many pages of bookkeeping from which these numbers are derived. A full
tally appears below.

α {1}-expressive {2, 3}-expressive Sheffer

111 540 0 0

112 643 0 0

113 0 0 0

121 0 0 0

122 0 0 0

123 0 0 0

131 643 0 0

132 396 0 0

133 0 0 0

211 729 729 389

212 713 713 389

213 0 704 0

221 0 648 0

222 0 584 0

223 0 581 0

231 729 729 720

232 398 653 389

233 0 661 0

311 729 729 389

312 729 729 720

313 0 648 0

321 0 704 0

322 0 661 0

323 0 581 0

331 713 713 389

332 398 653 389

333 0 584 0

Total 7360 12004 3774
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9  
We have been investigating those truth functions expressible only in logics
whose irreducible theories are all maximally consistent. These, of course, are
the expressive functions. A good many of these functions have been identified:
all the classical ones [7], all the unary finitely-many-valued ones [8], all the bin-
ary three-valued ones. Now here is a curious fact: at most one reducible theory
appears in any logic expressing any of the functions just listed. When such a
theory appears it is always the set of all sentences. So, in any logic expressing
one of these functions, every consistent theory is maximally consistent.
Here is the question. Is this always the case? Are expressive functions ex-

pressible only in logics whose consistent theories are all maximally consistent?
Do expressive functions make it impossible for a reducible theory to be con-
sistent? I would guess this is so. I would guess there is a simple reason why this
is so. I would dearly love to know what that reason is.
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