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Abstract: In this paper we present a Gentzen system for reasoning with
contrary-to-duty obligations. The intuition behind the system is that a
contrary-to-duty is a special kind of normative exception. The logical
machinery to formalise this idea is taken from substructural logics and
it is based on the definition of a new non-classical connective capturing
the notion of reparational obligation. Then the system is tested against
well-known contrary-to-duty paradoxes.

1 
One of the main themes in the philosophical discussion on deontic logic is
about reasoning with contrary-to-duty () obligations. In this perspect-
ive, it is widely acknowledged that the crisis of Standard Deontic Logic ()
is strongly related to the formulation of some notorious paradoxes centring
around the regulation of the violation of obligations. Puzzles like Chisholm’s
and Forrester’s paradoxes, Reykjavik scenario and Möbius strip example, de-
pict situations where various combinations of reparational and unconditional
obligations give rise to logical contradictions or counterintuitive conclusions.
As a matter of fact, a great part of the efforts in deontic logic have been driven
by solving these problems and a plethora of different strategies have been ac-
cordingly proposed. A full analysis of all these contributions is obviously bey-
ond the scope of this paper.
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However, we believe that some of those approaches deserve to be con-
sidered here in some detail. We refer in particular to the works whose starting
point can be summarised in the following thesis: “no logic of norms without at-
tention to the normative systems in which they occur” [15, p. 32]. Even though
this idea at first sight seems to be obvious, it is of great value since it pro-
poses what we could call a “holistic reading” of normative reasoning. Actu-
ally, we think this intuition is fundamental for at least two reasons. Firstly it
reestabilishes the often neglected link between philosophy of norms (specific-
ally, philosophy of law) and deontic logic. It is quite odd, for a legal philosopher,
to conceive of norms in isolation. Norms interplay with each other. Thus, a
normative set can (must) have different meanings and may (should) contrib-
ute to diverse conclusions if it is included in distinct normative systems. The
“spirit” of such norms changes according to their systematic reading. Secondly,
thanks to this approach to normative reasoning, it is possible to give both a
simple and appealing account of  obligations and consequently solutions
to the just mentioned paradoxes of deontic logic.
In a wide sense, significant examples in this direction are some papers by

H. Prakken and M. Sergot [18, 19]. Basically, they regard  structures as
contextual obligations, that is obligations strictly relative to a certain context
of application. Accordingly, they are not just conditional obligations which
hold without restriction and so factual detachment is not in general permit-
ted. On the other hand, it must be the case that primary obligations related to
s are still in force at least outside their specific context of violation. Thus,
the authors argue that some cases are inconsistent, in particular when a 
norm states a reparational obligation which is in contradiction with an another
primary obligation in the system. In logical terms, this idea has been first im-
plemented by the so-called principle of “downwards inheritance” for checking
the unrelatedness between contexts and primary obligations [18]. Later, they
developed a peculiar semantical construction to characterise a preference or-
dering over the worlds which is strictly sensitive of the “number” of reciprocal
incompatibilities (potential violations) between norms.
A different approach, inspired by similar intuitions, has been developed

in particular by D. Makinson and L. van der Torre. Their main idea, as poin-
ted out by Makinson [15] himself, can be traced back to a pioneering work by
Stenius [22] and it was later improved by Alchourrón and Bulygin [1, 2]. This
line of investigation is based on the intuition that any obligation can be ex-
plained in terms of a consequence relation of what is explicitly stated as obligatory
in a normative system. Actually, Makinson and van der Torre’s approach is a
further step in this direction. Their analysis is meant to capture this original
idea; in addition they impose some constraints on the manipulation of condi-
tional norms. As expected, some restrictions are required both on strength-
ening of antecedent and on transitivity, since this is vital in  contexts. A
related point thus concerns the directionality of normative conditionals. It
is commonly acknowledged that contraposition cannot be accepted: the con-
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sequence relation under which a normative system is closed is not classical but
is to be modelled by permitting only a directional iterative detachment of ob-
ligations. The conditions of such a detachment are in turn strictly connected
with performing a consistency check in the normative system. More precisely,
the detachment of an obligation B can only be obtained by using the regula-
tions which are consistent with the condition stated for B. If it is not the case,
then B is a not a consequence of the normative system. This task can be done
within a labelled deductive system based on the so-called Input-Output logic
developed by L. van der Torre [16, 17, 23].
Basically, our system starts from this last conception of normative reason-

ing. First, it is based on a purely syntactic view of deontic logic so that all the
machinery consists of defining a suitable consequence relation for dealing with
norms. Second, some intuitive conditions are required to adequately capture
the global interplay between the norms included in a given normative system.
In particular this is done by introducing a new logical operator of “normative
reparation” in order to make explicit the relation between primary obligations
and their related s and to combine them in single regulations. This will
allow us to give a plausible reading of  structures.
In what follows we first argue that, logically,  obligations are a special

kinds of exceptions (Section 2). Then we propose a Gentzen system specially
tailored to cope with the above intuition. In particular, as usual with Gentzen
systems, we provide general inference rules for the introduction and the elim-
ination of a non-classical connective intended to capture the meaning of 
structures (Section 3). Before introducing the formal notions of normative sys-
tem, ideal situation, violation, etc., in Section 5, we present some of the most
common instances of the inference rules, and we shortly discuss them in rela-
tion to well-know patterns of normative reasoning (Section 4). At this point
we have all the formal machinery needed to examine in depth some of the
most important  paradoxes (Section 6). We conclude the paper with some
insights about possible extensions of the system, such as the definition of a
normative consequence relation for the notion of permission.

2      
What is a contrary-to-duty obligation? The common reading suggests that this
is nothing but a reparational obligation of a violated norm; accordingly, it is in
force only when a violation occurs. In this paper we would like to argue that
a  obligation can be conceived of in a slightly different way, namely as a
special kind of normative exception.
What does it mean that a  obligation is an exception? Norms are by

definition violable: a norm which cannot be violated is meaningless or, at least,
seems to be useless. If a norm says that it is obligatory to kill or not to kill, then
the norm says nothing. It is not a reason to act. In other words, norms do not
concern simply what should be the case in any ideal situation but they should
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be open to their violation. This intuition is widely accepted but we feel it has
not been fully investigated from a logical point of view. If we look at realistic
normative domains (e.g., law) we realise that the obligation not to kill is usually
rendered as a norm stating an appropriate sanction which ought to follow in
case of violation. Actually, it is not by chance that H. Kelsen [14] talks about
legal obligations, called by him primary norms, as norms stipulating sanctions.
A similar approach can be found in the analysis of deontic logicians like A.R.
Anderson [3] who define ought-assertions as obligations to do something or to
repair their violations by means of sanctions. We are aware that this is one of
the most discussed issues in contemporary philosophy of norms (for a recent
overview, see, e.g., [25]) since it concerns hard problems such as the very nature
of conditional obligations. However, besides the plethora of different opinions
on this matter, a point seems intuitively clear: if a norm is categorical, then it
does not admit violations. In logical terms this means that it is impossible to
derive secondary obligations from it, otherwise, it is not categorical at all. In
the case of  structures we are not dealing with these kinds of norms but
with different normative domains. Of course, a norm-giver who makes norms
as obligations conditioned to sanctions is trying first to state what is obligatory.
On the other hand, he/she is to be ready to reply to violations. The notion
of  norms as exceptions is clear if we reason from the point of view of
the addressee of a norm. In this case, norms like these can be interpreted in
terms of alternative reasons to act: do x or you will be sanctioned. Actually
the addressee has two logical options. Even the second can be acceptable; how-
ever, since it is a sanction, it has to be considered as a normative exception to
the primary obligation. Something similar also holds in the perspective of the
norm-giver. In fact, he/she has to impose a fair and proportional sanction for
the violation of a given obligation; in this way, any action which is a violation
of a primary obligation must be understood as an “exceptional action” with
respect to what is obligatory.
In this perspective, a  obligation (1) is a special kind of logical excep-

tion of the normative content of a primary obligation, and (2) is not a usual
conflicting obligation which overrides such a primary obligation. As we shall
see, an immediate consequence of this thesis is that a primary obligation and
its s can and must give raise to a unique norm, expressing the true meaning
of the normative content they define in a given normative system.
Given this general background, let us see in detail why and how  norms

can be logically thought of as special exceptions of primary obligations. Ac-
cording to the usual account, a norm with exception can be represented as

A ⇒ B

A, E1 ⇒ ¬B
...

A,En ⇒ ¬B
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Let us now consider⇒ as a sub-structural consequence relation ` without the
structural rules of contraction, duplication, and exchange. The main reason
for this choice is that we want to investigate the very nature of normative
consequence without any commitment to the classical interpretation. In this
perspective the comma does not correspond to the classical conjunction on the
left side of ` and the classical disjunction on the right side. Thus the meaning
of the expression

A1, . . . , An ` B1, . . . , Bm

is: the sequence1 A1, . . . , An comports that B1 is the case; but if B1 is not
satisfied, then B2 should be the case; if both B1 and B2 are not the case, then
B3 should be satisfied, and so on. In a normative context, this means that
the content of the obligation determined by the conditions A1, . . . , An is B1;
however the violation of B1 can be repaired by B2; in addition the violation of
the reparation B2 —in response to the violation of B1— can be repaired by B3,
and so on.
Now, let us consider the standard rules for negation, that is:

A,B ` C

A ` ¬B,C

A ` B,C

A,¬B ` C

If¬ is an involutive operator (i.e., ¬¬A ≡ A), the effect of these rules is to move
a formula on the other side of `, changing the polarity. Accordingly, given the
normative conditional

A ⇒ B (1)

and its exception
A,¬B ⇒ C (2)

we can obtain
A ⇒ B,C (3)

applying the rule for the negation on (2).
The normative conditional in (1) says that B should be the case when the

condition A obtains. According to (2) C should be the case given A and ¬B;
thus (2) is, at the same time, a  obligation and an exception of (1). In a
classical reading of (3), “,” would correspond to the classical disjunction. How-
ever, this is not the case in the present interpretation, where, intuitively, the
expression on the right side of ` in (3) can be thought of as

B ∨ (¬B → C) (4)

Obviously (4) is just an approximation of the meaning of the consequent of (3)
since, in classical logic, it is equivalent to B ∨ C. The idea we want to stress

1In the rest of the paper we will lift the restriction that the left-hand side of ` is a sequence
and we will require that it is a set (see Definition 1). Accordingly the comma in the left-hand
side can be understood as classical conjunction.
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out here is that, to satisfy the right-hand side of (3), one has to satisfy at least
one of them and there is a preference for the first. Thus “B,C” corresponds to
a disjunction where the order of disjuncts matters. This suggests that we can
understand (3) as a shorthand for the following set of normative conditionals

A ⇒ B (5)
A ⇒ ¬B ∧ C (6)

The two conditionals are mutually exclusive and they represent two acceptable
alternatives, even if the first is preferred to the second. According to this view
the norm in (3) subsumes the norms in (1) and (2). In other words it states that,
given A, B ought to be the case; otherwise, under the same condition A, C is
obligatory. Therefore, not surprisingly, (3) is a  obligation of (1).
What we have just said gives us the possibility of dealing with  reason-

ing within a purely syntactic framework. The next section provides a formal-
isation of s in terms of a Gentzen system for the non-classical connective
⊗, corresponding to the “,” on the right side of a normative consequence rela-
tion ` characterising obligations. Given the intended interpretation of A ⊗ B

as “B is the reparation of A”, the connective ⊗ permits the combination of
primary and  obligations into unique regulations. It has been argued that
violations are different from exceptions [18, 24]. We think this analysis is cor-
rect insofar as it maintains that a norm is still in force even when it is violated,
whereas a default like ‘birds fly’ is cancelled, e.g., by the fact that Tweety does
not fly. As a matter of fact, it is quite odd to say that an obligation is cancelled
by its violation. On the other hand, our idea that a  is a special kind of
exception does not mean that the primary obligation has to be cancelled or
even overridden by its s. As we shall see, we do not introduce any kind of
machinery to account for the overriding of a primary norm by its s. We
simply argue that a normative system containing primary and  obligations
actually gives its addressees the possibility to comply with either primary or, as
exceptions, secondary (tertiary, etc.) obligations. Obviously, compliance with
primary norms or their s are not put at the same level, but refer to different
degrees of ideality. In this perspective, it should be noted in advance that the
introduction of ⊗ can be done iteratively depending on the number of levels of
ideality determined by the chains of s contained in the normative system.
This is in a way the syntactic counterpart of the thesis, quite common in the
deontic logic community, that s are semantically rendered in a preference
(ordering) semantics, where the order among sets of worlds expresses different
levels of ideality and violability.

3      
First of all, let us define our formal language L. It consists of a countable set of
atomic formulas. Well-formed-formulas are then defined using the unary con-
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nective ¬ (negation) and the binary connective ⊗ which is intended to formal-
ise  statements.

 1 Let `O be a binary consequence relation defined over P(WFF)×WFF.
Thus the expression Γ `O A is a sequent where Γ (the antecedent) is a finite (possibly
empty) set of formulas andA is a formula.

As usual in Gentzen systems the meaning of operators and connectives is given
by the rules for their introduction and elimination (cf., e.g., [20]). More pre-
cisely, this is true in the presence of the structural rules of exchange, duplica-
tion and contraction. Otherwise, the introduction and elimination rules have
to be supplemented by rules for the “structural” meaning of the operators in-
volved [8, 21].
According to Definition 1 the usual rules of contraction, duplication and

exchange hold trivially for the formulas in the antecedent. However, they do
not make any sense for the consequent so we need properties describing the
structural behaviour of ¬ and ⊗.
The only property we assume for ¬ is that it is an involutive operator, i.e.,

¬¬A ≡ A for any formula A; while the basic logical properties for ⊗ are the
following:

1. A⊗ (B⊗ C) ≡ (A⊗ B)⊗ C

2.
⊗n

i=1 Ai ≡ (
⊗k−1

i=1 Ai)⊗ (
⊗n

i=k+1 Ai) where Aj = Ak and j < k

Condition 1 is just associativity of ⊗, while condition 2 corresponds to duplic-
ation and contraction. In fact, according to the intuitive reading of this con-
nective given in the previous section, the expression on the right side of ` can
be considered as an ordered set. However, the full meaning of the operator ⊗
is given by a rule for its introduction (⊗I) and the corresponding rule for its
elimination (⊗E). Thus, let us see its logical characterisation with respect to
the normative consequence relation `O.

Γ `O A⊗ (
⊗n

i=1 Bi)⊗ C ∆,¬B1, . . . ,¬Bn `O D

Γ,∆ `O A⊗ (
⊗n

i=1 Bi)⊗D
(⊗I)

Γ `O A⊗ B⊗ C ∆ `O A⊗ ¬B⊗D

Γ,∆ `O A⊗ C
(⊗E)

To complete the formal description of the system we have to give the con-
ditions for > —an always true formula— and for ⊥, a generic formula for a
contradiction (or normative conflict). In particular, as we shall see, the use of
⊥ is helpful for characterising the notion of genuine normative conflict.

> is defined in terms of ⊗; more precisely

A⊗ ¬A ≡ >. (7)
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To understand the equivalence above we have to examine the formulas involved
in the left-hand side of it. This formula, A ⊗ ¬A, states that the reparation of
A is ¬A; but a reparation occurs when the thing it repairs fails, so ¬A should
be the case when ¬A is the case: in other words, the construction states that
the violation of the primary obligation is, at the same time, the content of the
secondary obligation that should repair this violation. Thus A⊗¬A is fulfilled
when we have either A or ¬A; in each state of affairs we have either A or ¬A,
so any state of affairs satisfies A⊗ ¬A2. It is immediate to see that

A⊗> ≡ >⊗A ≡ >. (8)

In fact, A⊗> and >⊗A are always fulfilled. In the first formula, for example,
it is stated that A is obligatory; however, if ¬A, > is the reparation of this viol-
ation, but > is always the case. Analogous considerations apply to the second
formula, thus both are equivalent to >.
Accordingly it is reasonable to stipulate that

A⊗⊥ ≡ ⊥⊗A ≡ A. (9)

Let us provide some comments on (9). Consider A ⊗ ⊥. This says that A is
the first deontic choice and that, in case of violation, ⊥ is the second deontic
choice. However, ⊥ can never be fulfilled and so, intuitively, it may be ignored.
Thus the formula is intuitively satisfied only by A. Analogously, ⊥ ⊗ A says
that ⊥ is the first deontic choice, but it can never be fulfilled and so it is always
violated. The second choice is A, which is the only possibility3.
The following rule is devised for making explicit conflicting norms (contra-

dictory norms) within the system:

Γ `O A ∆ `O ¬A

Γ,∆ `O ⊥
(I⊥)

where

1. there is no sequent Γ ′ `O X such that either ¬A ∈ Γ ′ or X = A⊗ B; and

2. there is no conditional norm ∆ ′ `O X such that either A ∈ ∆ ′ or X =

¬A⊗ B; and
2Given this intuition, there are reasons for avoiding to introduce> and⊥ in the language. In

fact, if > is equivalent to A⊗¬A, it trivially follows that ⊥ corresponds to ¬(A⊗¬A). However,
as we will comment in Section 7, it is not easy to provide a meaningful and intuitive reading of
the negation of ⊗-constructions. So we will prefer here to have > and ⊥ in the formal language.

3Intuitively, the occurrence of > and ⊥ within ⊗-constructions trivialises and transforms
them into something very close to classic disjunctions. With > and ⊥ we have then a limited
form of exchange. Indeed, given A⊗> and >⊗A, on the one hand, and A⊗⊥ and ⊥⊗A, on
the other, they are equivalent, respectively, to > and A. In these constructions any preference
order among formulas is lost and the operator ⊗ gets closer to ∨: (A ∨ >) ≡ (> ∨ A) ≡ > and
(A ∨ ⊥) ≡ (⊥ ∨ A) ≡ A. This is a further support to the interpretation of ⊗ as an ordered
disjunction.
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3. for any formula B, {B,¬B} 6⊆ Γ ∪ ∆.

The meaning of these three conditions is that given two conditional norms
(sequents), we have a conflict if the normative content of the two norms is
opposite, such that none of them can be repaired, and the states of affairs they
require are consistent.
The last aspect of the system we want to deal with is the relation of sub-

sumption between two sequents.

 2 Letn1 = Γ `O A⊗B⊗C andn2 = ∆ `O D be two sequents, where
A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci. Then n1 subsumes n2 iff

1. Γ = ∆ andD = A; or
2. Γ ∪ {¬A1, . . . ,¬Am} = ∆ andD = B; or
3. Γ ∪ {¬B1, . . . ,¬Bn} = ∆ and eitherD = A⊗

⊗k6p
i=1 Ci orD = A.

The idea behind this definition is that the normative content of the norm n2

is fully included in the norm n1. Thus n2 does not add anything new to the
system and it can be safely discarded.

4   
The inference rules introduced in the previous section allow us to formally
characterise the notion of  obligation with respect to `O. They are presen-
ted there in the most general version. In order to make clearer their intuitive
meaning, in this section we will give the reader some simplified variants which
correspond to intuitive situations in which s may occur.
Let us consider a norm like

Γ `O A.

Given an obligation like this, if we have that

∆,¬A `O C,

then the latter must be a good candidate as reparational obligation of the
former. This idea is formalised as follows:

Γ `O A ∆,¬A `O C

Γ,∆ `O A⊗ C

According to this view, if there exists a conditional obligation whose ante-
cedent is the negation of the propositional content of a different norm, then
the latter is a reparational obligation of the former. In this way, the  ob-
ligation can be forced to be an explicit reparational obligation with respect to
the violation of its primary counterpart. Accordingly, it seems reasonable to
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discard both premises when they are subsumed by the conclusion. Their recip-
rocal interplay makes them two related norms so that they cannot be viewed
anymore as independent obligations. Notice that if Γ and ∆ are empty, then we
are dealing with the basic case in which the primary obligation has the format
of an apparently categorical obligation.
As we have alluded to above, the rule ⊗I can also generate chains of s

in order to deal iteratively with violations of reparational obligations. The
following case is just an example of this process.

Γ `O A⊗ B ¬A,¬B `O C

Γ `O A⊗ B⊗ C

Chains of s can be manipulated in different ways. An interesting case is
when other reparations are added inside a sequence of s built via the ⊗
operator. This is possible since any conditional norm can be combined with a
different obligation insofar as the former regulates the violation of the latter.
Given an obligation we may thus infer more than a single explicit new ⊗-norm
conditioned to its violation: in fact, a norm-giver can stipulate different repar-
ations for a particular violation. The presence of such new regulations in the
normative system is equivalent to saying that it is obligatory to fulfil the con-
junction of several  obligations if the same violation occurs. More precisely,
even if a primary obligation can be discarded after some applications of ⊗I, an-
other explicit  regulation can be drawn with respect to the first obligation
of the chain of reparational obligations we have already in the system:

Γ `O A⊗ B⊗ C ∆,¬A `O D

Γ,∆ `O A⊗D

What about disjunctions of s? It is quite common in our every-day
experience to tackle situations where different obligations can repair alternat-
ively to the violation of the primary obligation. Suppose John eats a piece of
cake even though his mother commanded him not to touch it, since it is for
some guests invited for dinner. When she realises that John has eaten the cake
she could say to John: buy another cake or apologise for your bad action! As
a matter of fact, both secondary obligations can repair alternatively to the vi-
olation of the primary obligation. Situations like this are also far unusual in
legal contexts. It is not hard to find examples, at least in most western coun-
tries, where the legislator states different sanctions for certain kinds of crime
as alternatives to prison. Actually, the system we provided seems unable to
capture these cases for the trivial reason that it is based on a language which
does not include the boolean connectives. However, something very close to a
disjunctive obligation can be represented when the normative system permits
the derivation of the symmetry of two obligations with respect to ⊗:

Γ `O A ¬A `O B

Γ `O A⊗ B

Γ `O B ¬B `O A

Γ `O B⊗A
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In this case, A and B repair each other, so it can be said that it is obligatory to
do A or B if Γ holds.
The intuitive meaning of ⊗E can be illustrated with the help of a couple of

rules that can be derived from it. First of all, consider its trivial instance when
n = 2:

Γ `O A⊗ B ∆,¬A `O ¬B

Γ,∆ `O A
(10)

Informally, if the normative system contains both a reparational obligation of
A and a norm stating the negation of such a reparation as a  obligation of
the violation of A, then each of the two secondary obligations makes meaning-
less the other as a true reparation of A. Notice that these norms do not gen-
erate a contradiction: both premises are consistent with the original primary
obligation A. This fact should not be strange: a “contradiction” between two
secondary obligations conditioned to the violation of the same primary obliga-
tion A is nothing but a (perhaps bizarre) way for restating A as obligatory. The
presence of B and its negation as s of A is in a way irrelevant for A. For
similar reasons, we can derive a rule like the following:

Γ `O A⊗ B ∆ `O A⊗ ¬B

Γ,∆ `O A
(11)

In general we have to distinguish between genuine normative conflicts from
apparent ones. By normative conflict we mean any situation ruled by opposite
norms and which results in an impossible state of affairs; or, in other words,
a situation in which the normative content of all relevant norms cannot be
fulfilled, ending inevitably in a violation that cannot be repaired.
The simplest case of conflict of norms obtains when only two categorical

obligations are given, that is, when we have both `O A and `O ¬A. It is
immediate to see that we can apply I⊥, thus deriving `O ⊥.
Let us consider the following patterns of apparent conflicts. In the case of

A `O B ¬A `O ¬B

the conflict is apparent because the conditions of application of the two norms
are mutually exclusive; thus situations where both norms are applicable do not
exist.
On the other hand, given

`O A `O ¬A ¬A `O B

we have two conflicting categorical obligations. However, a closer analysis
shows that actually one of them is not categorical insofar as it admits a .
Thus the situation where the  obligation is in force is still normatively ac-
ceptable, even if the corresponding primary obligation is violated. But in this
case the other categorical obligation is fulfilled.
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This pattern also shows that the system at hand is nonmonotonic: the pres-
ence of ¬A `O B prevents the application of I⊥. Hence `O A and `O ¬A no
longer derive `O ⊥.
The above discussion points out that the only conflicts we have to worry

about are the so called genuine conflicts. These mean that fragments of the
system from which a conflict can be obtained are not rational. In idealised
situations genuine conflicts should not occur. Unfortunately this is seldom
the case in real-life. Thus methods to restore rationality should be devised.
Indeed, many of them have been put forth, and it is beyond the scope of the
paper to investigate such a topic. However, unlike more traditional treatments
of s, the present approach considers s and normative conflicts just as
two orthogonal aspects of normative reasoning. Accordingly the interested
reader can try to plug-in her preferred way to deal with (genuine) conflicts.
Let us now discuss the notion of subsumption. This notion is meant to

capture the idea that the “normative” content of a sequent (or norm) is implicit
in other sequents. As we shall see in Section 5 the idea behind our proposal is
to start from an explicitly given set of norms, a normative system, and then
compute the closure of the theory under the inference rules described in the
previous section. In other words we use the inference rules to generate all
norms of a given normative system. Given the structure of the inference rules
it is possible that each of them can be applied with respect to two sequents in
slightly different ways, and in some cases the meaning of the sequent resulting
from such applications is already covered by other sequents; in other cases the
inference rules can produce generalisations of the sequents used to apply the
rule, and, consequently, the original rules are no longer needed in the system.
Thus some sequents can be removed without changing the meaning of the
normative system in which they occur or from which they are derived.
Let us now examine some instances of subsumption. As an example of the

first condition of Definition 2 we have the norms

Γ `O A⊗ B⊗ C (12)
Γ `O A⊗ B (13)

The first norm, (12), subsumes the second (13). Both norms state that given Γ

we have the obligation A, and if we fail to fulfil it —i.e., if we violate it—, then
the violation of A can be repaired by B. In other words B is a secondary oblig-
ation arising from the violation of the primary obligation A. In addition the
first norm prescribes that the violation of the secondary obligation B can be re-
paired by C. As we discussed in Section 1 norms cannot be taken in isolation in
so far as they exist in a normative system. Consequently the meaning of a norm
depends on the context the norm is embedded in, and thus the whole norm-
ative system contributes to the meaning of a norm. In agreement with this
holistic view of norms we have that the normative content of (13) is included in
that of (12). Accordingly norm (13) does not add any new piece of information
to the normative system, it is redundant and can be dispensed from the system.
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To exemplify the second condition we take

Γ `O A⊗ B (14)
Γ,¬A `O B (15)

It is easy to recognise that this case is a simple instance of a . The first
rule says that given Γ we have the primary obligation A, whose violation is
repaired by the secondary obligation B, while, according to the second rule,
given the same set of circumstances Γ and ¬A we have the primary obligation
B. However, the primary obligation of (15) obtains when we have a violation of
the primary obligation of the first rule, (14). Thus the condition of applicability
of the second rule includes that of the first rules, and then they have the same
normative content. Therefore the first rule is more general than the second
and we can discard the second rule from the normative system.
For the third and last condition of Definition 2 we consider the sequents

Γ `O A⊗ B⊗ C (16)
Γ,¬B `O A⊗ C (17)

In this case we have a  of a . Therefore we can repeat the same ex-
planation of the previous case just replacing the primary obligation with the
secondary obligation.

5     
Now we need to introduce a formal definition of normative system. We distin-
guish between normative codes and normative systems. A normative code can
just be considered as the set of explicitly promulgated norms, while its related
normative system is obtained from the normative code by adding principles to
derive other norms. Formally:

 3 LetD be a set of deontic notions (e.g., obligation, permission, etc).

• ANormative Code is a set {Si}i∈D where each Si is a finite set of norms.
• An Implicit Normative System is a set {(Si,`i)}i∈D, where each Si is a finite set of
sequents, and each `i is a normative consequence relation for i.

• An Explicit Normative System is a set {↑(Si,`i)}i∈D, where each ↑(Si,`i) is the least
fixed point (if it exists) of the closure under `i and subsumption of Si.

This is a very general definition of normative system. One of the main ad-
vantages of an explicit normative system resides in the fact that the complete
meaning and the content of a norm are entirely encoded in the formulation of
the norm itself and not scattered around its normative system. In fact, in this
paper, we consider the normative system obtained from the deontic notion of
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obligation and the corresponding normative consequence relation we have in-
vestigated in Section 3. Some insights about the integration of obligation and
permission will be given in Section 7.
We are now ready to give conditions under which we are able to determine

whether a state of affairs is compatible with a normative system or if it repres-
ents a violation of some norms. To this end, we shall consider a state of affairs
as a set of literals; moreover we will restrict ourselves to the case where all the
formulas made explicit in the norms (sequents) of a normative system are liter-
als as well. Notice that this choice does not allow us the use of expressions like
¬(A ⊗ B) on the right side of `O nor occurrences of ⊗ in the antecedents of
the sequents.
We are aware that this is a debatable limitation. However, the intuitive

meaning of ¬(A ⊗ B) is unclear, or at least it seems to admit several possible
interpretations. What does it mean that B is not a reparation of A?4 Until we
have a precise answer to this question we prefer not to commit ourselves to
any particular interpretation; therefore we do not give the logical meaning of
negation. Indeed, the introduction and elimination rules for ¬ have not been
given. Moreover, it is not easy to give an intuitive account of formulas such
as A⊗ B if they occur on the left side of the consequence relation. A possible
interpretation could be that such occurrences mean something like: “It is a fact
that B is a reparational obligation of A”. However, we prefer here to refrain
from presenting solutions to these problems. Of course, these are matters of
further investigation, but we feel that they can be resolved in a satisfactory way
as soon as a suitable machinery for reasoning about norms is introduced in the
system.
First of all we define when a state of affairs is either ideal, sub-ideal, or non-

ideal with respect to a norm. Then we extend these notions both to explicit
and to implicit normative systems.

 4

• A state of affairs s is ideal with respect to a sequent (norm) Γ `O A1 ⊗ · · · ⊗ An iff if
Γ ⊆ s, thenA1 ∈ s.

• A state of affairs s is sub-ideal with respect to a sequent (norm) Γ `O A1 ⊗ · · · ⊗An iff
if Γ ⊆ s and ∃Ai, 1 < i 6 n such that ∀Aj, j < i {¬A1, . . . ,¬Aj} ⊆ s, thenAi ∈ s.

• A state of affairs s is non-ideal with respect to a sequent (norm) Γ `O A1⊗ · · · ⊗An iff
it is neither ideal nor sub-ideal.

According to Definition 4, a situation is ideal with respect to to a norm if
the norm is not violated; sub-ideal when the primary obligation is violated but
the norm admits a reparation, which is satisfied; non-ideal when the primary

4See Section 7 for some intuitions about the relation between ¬ and ⊗ with respect to an
explicit consequence relation of permission.
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obligation and all its reparations are violated. This definition can easily be
extended to the case of explicit normative systems:

 5

• A state of affairs s is ideal with respect to an explicit normative system iff there is no
norm in the system for which s is either sub-ideal or non-ideal.

• A state of affairs s is sub-ideal with respect to an explicit normative system iff there is a
norm for which s is sub-ideal, and there is no norm in the system for which s is non-ideal.

• A state of affairs s is non-ideal with respect to an explicit normative system iff there is a
norm for which s is non-ideal.

Definition 5 follows immediately from the intuitive interpretation of ideality
and of the related notions we have provided in Definition 4. On the other hand,
the relation between an explicit normative system and the implicit one from
which it is obtained seems to be a more delicate matter. A careful analysis of
the conditions for constructing an explicit normative system allows us to state
the following general criterion:

 6 A state of affairs s is ideal (sub-ideal, non-ideal) with respect to an
implicit normative systemN if s is ideal (sub-ideal, non-ideal)with respect to the explicit
normative system obtained fromN.

It is worth noting that Definition 6 shows the relevance of the distinction
between explicit and implicit normative systems. This holds in particular for
the case of sub-ideal situations. Suppose you have an implicit normative system
consisting of the norms

`O A ¬A `O B

The corresponding explicit normative system is

`O A⊗ B

While the state of affairs s = {¬A,B} is sub-ideal with respect to the latter, it
would be non-ideal for the former. In the first case, even if ¬A `O B expresses
in fact an implicit reparational obligation of `O A, this is not made explicit. So,
there exists a situation which apparently accomplishes a norm and violates the
other without satisfying any reparation. This conclusion cannot be accepted
because it is in contrast with our intuition according to which the presence
of two norms like `O A and ¬A `O B must lead to a unique regulation. For
this reason, we can evaluate a situation as sub-ideal with respect to an implicit
normative system only if it is sub-ideal with respect to its explicit version.
Given the restrictions we have just discussed it is easy to show, by a straight-

forward application of well-known results of set theory, that an explicit norm-
ative system for any implicit normative system always exists and it is unique if
the subsumption is applied after the computation of the closure of the implicit
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normative system with respect to the inference rules. To illustrate this issue
consider the following four norms

F ` A⊗G (18)
E ` A⊗ B⊗ C⊗D (19)

E,¬A,¬B ` C (20)
E, F,¬B ` A⊗ C (21)

Here 19 subsumes 20 and ⊗I applied to 18 and 20 produces 21. However, if we
apply subsumption first we have to delete 20 and 21 is no longer derivable from
18 and 19 alone.
Finally, let us define the notion of ought. It is intended to formalise what

any explicit normative system requires as obligatory, if a state of affairs is given.

 7 Given a state of affairs s and an explicit normative system N, the set
Ought(s) is a set of sets of literalsO(s) − s such that for eachO(s):

• s ⊆ O(s); and
• O(s) is one of the smallest sets of literals such thatO(s) is at least sub-ideal with respect
toN; and

• O(s) does not contain a literal and its negation.

This definition is meant to capture the best possible alternatives to a given
situation. It also provides a semantics for `O and ⊗. Let Γ `O A be a sequent,
and let s be the smallest state of affairs satisfying Γ . Then s satisfies A iff
Ought(s) contains a set O(s) which is at least sub-ideal with respect to A. The
above construction does not distinguish the degree of ideality between states
of affairs. It only says whether complex obligations are fulfilled or violated by
some states of affairs. For example given the empty state of affairs and the
norm

`O A⊗ B,

both {A} and {¬A,B} are in Ought(∅). Therefore we have to identify the most
ideal situations: in the case at hand {A} because it is ideal, while {¬A,B} is sub-
ideal.5 Notice that in general it is not possible to determine the most ideal
situation. Let us consider the following normative system

`O A⊗ (B⊗ C) `O A⊗ (C⊗ B)

As we have seen in Section 4, given s = {¬A}, both B and C are reparations
of A, as well as the reparation of each other. Thus the two states of affairs

5A possible solution for this problem is to supplement the definition of satisfiability by
adding a degree of violation similar to the degree of disappointment proposed by Brewka, Ben-
ferhat and Le Berre [5] for their logic of ordered disjunction. However a careful analysis of this
topic is left as a matter of future work.
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s1 = {¬A,B} and s2 = {¬A,C} are both in Ought(s). It is immediate to see that
s1 is sub-ideal with respect to the first norm, while for the second norm every
extension containing C or ¬C will be sub-ideal with respect to it. Similarly for
s2.
Besides what we said in Section 4 about the consequence relation `O, it is

worth noting that also the notion of ought exhibits a nonmonotonic behaviour.
In fact, if we consider `O as a connective, ought can be viewed in terms of a
consequence relation where Ought(s) follows from a normative system N and
a set of states of affairs. If so, not only would different normative systems imply
trivially diverse Ought(s), but, given the sameN, different states of affairs (and
different violations) could also give distinct “oughts”. This confirms van der
Torre and Tan’s [24] thesis that violability has to be read as a special kind of
defeasibility.
In very general terms, our formulation follows the intuition of Jones and

Pörn [12, 13] insofar as it permits us to represent the real (actual) obligations
expressed by the system. However, our approach is based on purely syntactical
notion of ideality and is strictly related to the role of the operator ⊗. In this
way, it does not suffer from some drawbacks of Jones and Pörn’s analysis such
as the necessity of introducing hierarchies of sub-sub-ideal, sub-sub-sub-ideal
worlds and so forth.

6    
Now, let us see how our system deals with some of the most infamous para-
doxes of  reasoning. In particular, we want to give a formal account of
Chisholm’s [6] and Forrester’s [7] paradoxes, Belzer’s [4] “Reykjavik scenario”
and Makinson’s [15] “Möbius strip example”. Since these puzzles are well-
known in the deontic logic community we shall not recall any of their intuitive
examples but we will confine our analysis to their logical representation in our
formalism.

’  The basic scenario depicted in Chisholm’s paradox
corresponds to the following implicit normative system:

{`O h, h `O i, ¬h `O ¬i}

plus the situation s = {¬h}. First of all, note that the system does not determine
in itself any normative contradiction. This can be checked by making explicit
the normative system. In this perspective, a normative system consisting of
the above norms can only allow for the following inference:

`O h ¬h `O ¬i

`O h⊗ ¬i
(22)

Thus, the explicit system is nothing but

{h `O i, `O h⊗ ¬i}
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It is easy to see that s is ideal with respect to the first norm. On the other
hand, while s is not ideal with respect to `O h⊗¬i, we do not know if it is sub-
ideal with respect to such a norm. Then, we have to consider the two states of
affairs s1 = {¬h, i} and s2 = {¬h,¬i}. It is immediate to see that s1 is non-ideal
in the system whereas s2 is sub-ideal. If so, given s, we can conclude that the
normative system says that ¬i ought to be the case (see Definition 7).

   Let us now examin the logical structure of the im-
plicit system of norms which corresponds to Forrester’s scenario:

{`O ¬k, k `O g}

Even in this case, we have a single application of ⊗I:

`O ¬k k `O g

`O ¬k⊗ g

so that the explicit normative system is trivially as follows:

{`O ¬k⊗ g}

As is well-known, the paradox is based to the following assumptions: (1) k is
given as a fact; (2) g implies k. In  such premises permits one to apply the
inference rule  thus obtaining a normative contradiction with the obligation
¬k. Since our formalism is not able to treat formulas with boolean operators, it
seems impossible to represent the implication of k from g. Actually, we think
this is not a real problem. It is enough to replace k `O g with k `O k in the
implicit system. Thus, the explicit system will consist of the norm `O ¬k ⊗ k.
If so, the situation s = {k} is trivially sub-ideal with respect to the system
(remember that ¬k ⊗ k is equivalent to >). On the other hand, turning back
to the original formulation of the paradox, if s is given, the system consisting
of `O ¬k ⊗ g expresses consistently that g ought to be the case. In fact, the
situation s ′ = {k, g} is sub-ideal with respect to the system.6

  Consider now this version of the Reykjavik Scenario:

{`O ¬r, `O ¬g, r `O g, g `O r}

Similarly to the previous examples, we can draw the following inferences:

`O ¬g g `O r

`O ¬g⊗ r

`O ¬r r `O g

`O ¬r⊗ g

Accordingly, the explicit normative system is:

{`O ¬g⊗ r, `O ¬r⊗ g}

6And it is compatible with implication of k from g.
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Given the situation s = {r}, the solution of the paradox consists in concluding
that g ought to be case without deriving its negation. Actually, in our approach
this is easily obtained since the situation s ′ = {r, g} is sub-ideal with respect to
the explicit normative system.7

  Finally, let us look at Makinson’s “Möbius Strip” example. Its
logical structure is represented as follows:

{c `O ¬b, a `O c, b `O a}

This implicit normative system can be made explicit by drawing the following
inference:

c `O ¬b b `O a

`O ¬b⊗ a
(23)

Similarly to the previous examples, the explicit normative system is as follows:

{`O ¬b⊗ a, a `O c}

Given the state of affairs s = {b}, it is expected that both a and c should be
concluded. Actually, this is what we get from the normative system since the
situation s ′ = {b, a, c} is sub-ideal with respect to it. In fact, if b holds, this
means that the primary obligation ¬b is violated. Accordingly, the reparational
obligation a ought to be the case. As a consequence, since a is to be given, the
obligation c should follow as well.

7     
Our analysis of the above paradoxes has shown that the sets of norms that
characterise each of them are trivially consistent. However, even if such para-
doxes correspond to relatively simple cases, our formalism is able to capture,
at least potentially, more complicated normative structures. For this reason,
we think the notion of normative consistency seems to deserve additional and
more general remarks. A normative system is consistent if it does not allow for
any application of rule (⊥). Roughly speaking, if A or ¬A cannot be repaired
by the system8, then

Γ `O A ∆ `O ¬A

should correspond to a normative contradiction. However, while this is quite
clear when A is an atom, it is more difficult to understand intuitively the reas-
ons why an inconsistency must occur when A is an arbitrary formula. As pre-
viously said, a close inspection of the inference rules shows that we can have

7Makinson [15] pointed out that the conclusion of gmust be based on a prioritisation among
promulgations. In a way, this remark applies also to our approach insofar as the norms of the
explicit normative systems outweigh their counterparts in the implicit normative system. Re-
member that in our view a  is considered as an exception of a primary obligation.

8See Section 3 for the formulation of all the conditions of rule (⊥), and the end of Section 4
for a discussion.
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negations of chains of reparational obligations. Thus, the question to be solved
concerns the meaning of expressions like ¬(A⊗B). The problem is not so easy.
For this reason, in Section 5 we preferred to state the conditions for evaluating
a situation with respect to a normative system without considering this kinds
of formula. Of course, from a certain perspective the question could be viewed
as trivial: from a logical point of view, ¬(A⊗B) is nothing but the negation of a
non-atomic formula. On the other hand, we think that the lack of a rule which
defines the meaning of⊗ with respect to the negation is in a way unsatisfactory.
Since ⊗ is not a boolean connective, it is impossible to establish a suitable

definition of it in terms of any combination of formulas built by using ⊗ and
¬.9 One of the possible lines of investigation comports to devise an additional
consequence relation corresponding to the deontic notion of permission. In
particular, such a consequence relation could be characterised at least by the
following basic rules:

Γ `O A

Γ `P A
(24)

Γ `O A⊗ B

Γ `P A

Γ `O A⊗ B

Γ,¬A `P B
(25)

The first rule (24) is the version in our formalism of the notorious Ought-Can
principle. The rules in 25 extend 24 to expressions containing the operator ⊗.
It is easy to understand that, if a norm says that ‘A is obligatory, otherwise B’,
this must imply that both A and B are permitted.
Moreover, thanks to the introduction of `P it is possible to give a convin-

cing account of formulas like ¬(A ⊗ B). Since the negation applies to ⊗, this
means that B is not a reparational obligation of A and so its negation is permit-
ted. In other words, we can have the following rule:

Γ `O ¬(A⊗ B)

Γ,¬A `P ¬B
(¬⊗)

Even though this seems to be a good intuition, some problems are far from
solved. Suppose one has a norm like this

Γ `O ¬(A⊗ B)⊗ C

This sequent is admitted in our formalism. However, its meaning is not clear
and the application of a rule like (¬⊗) does not make sense in this case. If
¬(A⊗ B)means that B is not a reparational obligation of A, then the question
is: What does C stand for?
Problems like this, as well as the role of ⊗ on the left side of ` or, more

generally, the statement of some formal properties enjoyed by our Gentzen
9In [5] Brewka and colleagues argued that negation transforms their nested ordered dis-

junctions into standard disjunctions. In this way, the truth of ¬(A ⊗ B) makes A and B false.
Unfortunately, we do not think this solution is adequate to account for our intended meaning
of the ⊗ operator.
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system are matters of future work. Here we can just advance some lines of
future research:

• Defining an appropriate semantics for the system for which we can prove
soundness and completeness. As a starting point, we expect it would be
possible to adapt the semantics with degree of satisfaction proposed in
[5] to represent ordered disjunction in logic programming and qualitative
choice logic.

• Extending the deductive power of the system with non-monotonic pat-
terns such as cumulativity, restricted transitivity, etc.

• Combining the logic of ⊗ with a logic able to cope with normative con-
flicts. Preliminary results [9, 10] show that the logic of ⊗ can be easily
combined with Defeasible Logic. This combination has proved very suc-
cessful in the representation of Business contracts where  are very
frequent.

To sum up we have presented a formal system for reasoning with  struc-
tures in an easy and natural way. We hope that this can be extended to other
forms of normative reasoning.
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