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A: This document collects natural derivation systems for
logics described in Priest, An Introduction to Non-Classical Logic [4].
It provides an alternative or supplement to the semantic tableaux
of his text. Except that some chapters are collapsed, there are sec-
tions for each chapter in Priest, with an additional, final section
on quantified modal logic. In each case, (i) the language is briefly
described and key semantic definitions stated, (ii) the derivation
system is presented with a few examples given, and (iii) soundness
and completeness are proved. There should be enough detail to
make the parts accessible to students would work through parallel
sections of Priest.

This document collects natural derivation systems for logics described in
Priest, An Introduction to Non-Classical Logic [4]. It thus provides an alternative
or supplement to the semantic tableaux of his text. Some of the derivation sys-
tems may also be of interest in their own right. They are all Fitch-style systems
on the model of [1, 12], and many other places. Though a classical system is
presented for chapter 1, prior acquaintance with some such system is assumed.
Associated goal-directed derivation strategies are discussed extensively in [12,
chapter 6].
Except that some chapters are collapsed, there are sections for each chapter

in Priest, with an additional, final section on quantified modal logic. In each
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case, (i) the language is briefly described and key semantic definitions stated,
(ii) the derivation system is presented with a few examples given, and (iii)
soundness and completeness are proved. Notation is common with Priest,
though some nomenclature is improvised to keep things systematic. Though
cases of some proofs are left to the reader, there should be enough detail to
make the parts accessible to students who would work through parallel sec-
tions of Priest.
Demonstrations of completeness are all on the model of the standard argu-

ment for classical logic, and simplified considerably by the use of “subscripts”
and “overlines” in derivations. For the most part, I take over approaches from
tableaux in Priest. Thus, e.g., subscripts are like indexes from his tableaux.
Overlines are like underlines in [13]. Advantages of the approach to complete-
ness are particularly dramatic when quantifiers are introduced, as exhibited in
the section on quantified modal logic.

  

1  : CL (. 1) 48

2   : Kα (. 2,3) 56

3 -  : Nα (. 4) 72

4  : Cx (. 5) 84

5  : IL (. 6) 100

6 - : Mx (. 7,8) 113

7   : υX (. 9) 125

8   : Bx (. 10,11) 141

9   : Fnα 164

1  : CL (. 1)
1.1  /  
 The  consists of propositional parameters p0, p1 . . . com-

bined in the usual way with the operators, ¬, ∧, ∨, ⊃, and ≡. So each
propositional parameter is a ; if A and B are formulas, so are
¬A, (A ∧ B), (A ∨ B), (A ⊃ B) and (A ≡ B).

 An  is a function v which assigns to each proposi-
tional parameter either 1 (true) or 0 (false).
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 For complex expressions,

(¬) v(¬A) = 1 if v(A) = 0, and 0 otherwise.
(∧) v(A ∧ B) = 1 if v(A) = 1 and v(B) = 1, and 0 otherwise.
(∨) v(A ∨ B) = 1 if v(A) = 1 or v(B) = 1, and 0 otherwise.
(⊃) v(A ⊃ B) = 1 if v(A) = 0 or v(B) = 1, and 0 otherwise.
(≡) v(A ≡ B) = 1 if v(A) = v(B), and 0 otherwise.

For a set Γ of formulas, v(Γ) = 1 iff v(A) = 1 for each A ∈ Γ ; then,

 Γ |=CL A iff there is no CL interpretation v such that v(Γ) = 1 and v(A) =

0.

1.2  : NCL
NCL is just the sentential portion of the systemND from [12, chapter 6]. Refer
to that source for examples and further discussion (compare, e.g., [1]). Every
line of a derivation is a premise, an assumption, or justified from previous lines
by a rule. The rules include introduction and exploitation rules for each operator,
and reiteration. In the parenthetical “exit strategy” for assumptions, ‘c’ indicates
a contradiction is to be sought, ‘g’ a goal at the bottom of the scope line.

R (reiteration)

a P

P a R

¬I (negation intro)

a P A (c, ¬I)

Q

b ¬Q

¬P a-b ¬I

¬E (negation exploit)

a ¬P A (c, ¬E)

Q

b ¬Q

P a-b ¬E

∧I (conjunction intro)

a P

b Q

P ∧ Q a,b ∧I

∧E (conjunction exploit)

a P ∧ Q

P a ∧E

∧E (conjunction exploit)

a P ∧ Q

Q a ∧E

∨I (disjunction intro)

a P

P ∨ Q a ∨I

∨I (disjunction intro)

a P

Q ∨ P a ∨I

⊃I (conditional intro)

a P A (g, ⊃I)

b Q

P ⊃ Q a-b ⊃I

⊃E (conditional exploit)

a P ⊃ Q

b P

Q a,b ⊃E

∨E (disjunction exploit)

a P ∨ Q

b P A (g, a ∨E)

c R

d Q A (g, a ∨E)

e R

R a,b-c,d-e ∨E
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≡I (biconditional intro)

a P A (g, ≡I)

b Q

c Q A (g, ≡I)

d P

P ≡ Q a-b,c-d ≡I

≡E (biconditional exploit)

a P ≡ Q

b P

Q a,b ≡E

≡E (biconditional exploit)

a P ≡ Q

b Q

P a,b ≡E

NCL Γ ǸCL A iff there is an NCL derivation of A from the members of Γ .

As derived rules, we accept the following “ordinary” and “two-way” rules.
The “two-way” rules are usually presented as replacement rules. Insofar as we
will not have much call to use then that way, in order to streamline demonstra-
tions of soundness, we treat them just as ordinary rules which work in either
direction – where it is trivial that the rules are in fact derived in this sense from
the rules of NCL.

Ordinary Derived Rules

modus tollens

MT P ⊃ Q

¬Q

¬P

negated biconditional

NB P ≡ Q P ≡ Q

¬P ¬Q

¬Q ¬P

disjunctive syllogism

DS P ∨ Q P ∨ Q

¬P ¬Q

Q P

Two-way Derived Rules

DN P / . ¬¬P double negation

Com P ∧ Q / . Q ∧ P commutation
P ∨ Q / . Q ∨ P

Assoc P ∧ (Q ∧ R) / . (P ∧ Q) ∧ R association
P ∨ (Q ∨ R) / . (P ∨ Q) ∨ R

Idem P / . P ∧ P idempotence
P / . P ∨ P

Impl P ⊃ Q / . ¬P ∨ Q implication
¬P ⊃ Q / . P ∨ Q

Trans P ⊃ Q / . ¬Q ⊃ ¬P transposition

DeM ¬(P ∧ Q) / . ¬P ∨ ¬Q DeMorgan
¬(P ∨ Q) / . ¬P ∧ ¬Q

Exp P ⊃ (Q ⊃ R) / . (P ∧ Q) ⊃ R exportation
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Equiv P ≡ Q / . (P ⊃ Q) ∧ (Q ⊃ P) equivalence
P ≡ Q / . (P ∧ Q) ∨ (¬P ∧ ¬Q)

Dist P ∧ (Q ∨ R) / . (P ∧ Q) ∨ (P ∧ R) distribution
P ∨ (Q ∧ R) / . (P ∨ Q) ∧ (P ∨ R)

As examples, here are derivations to demonstrate the first form of Impl
(among the relatively difficult of derivations for the derived rules).

¬P ∨ Q ǸCL P ⊃ Q

1 ¬P ∨ Q P

2 ¬P A (g, 1 ∨E)

3 P A (g, ⊃I)

4 ¬Q A (c, ¬E)

5 ¬P 2 R
6 P 3 R
7 Q 4-6 ¬E
8 P ⊃ Q 3-7 ⊃I

9 Q A (g, 1 ∨E)

10 P A (g, ⊃I)

11 Q 9 R
12 P ⊃ Q 10-11 ⊃I
13 P ⊃ Q 1,2-8,9-12 ∨E

P ⊃ Q ǸCL ¬P ∨ Q

1 P ⊃ Q P

2 ¬(¬P ∨ Q) A (c, ¬E)

3 P A (c, ¬I)

4 Q 1,3 ⊃E
5 ¬P ∨ Q 4 ∨I
6 ¬(¬P ∨ Q) 2 R
7 ¬P 3-6 ¬I
8 ¬P ∨ Q 7 ∨I
9 ¬(¬P ∨ Q) 2 R
10 ¬P ∨ Q 2-9 ¬E

1.3   
The following are standard arguments. Cases that are omitted are like ones
worked, and so left to the reader.

 1.1 NCL is sound: If Γ ǸCL A then Γ |=CL A.

L1.1 If Γ ⊆ Γ ′ and Γ |=CL P, then Γ ′ |=CL P.

Suppose Γ ⊆ Γ ′ and Γ |=CL P, but Γ ′ 6|=CL P. From the latter, by VCL,
there is some v such that v(Γ ′) = 1 but v(P) = 0. But since v(Γ ′) = 1

and Γ ⊆ Γ ′, v(Γ) = 1; so v is a CL interpretation such that v(Γ) = 1 but
v(P) = 0; so by VCL, Γ 6|=CL P. This is impossible; reject the assumption:
if Γ ⊆ Γ ′ and Γ |=CL P, then Γ ′ |=CL P.

Main result: For each line in a derivation let Ai be the formula on line i and set
Γi equal to the set of all premises and assumptions whose scope includes line i.
Suppose Γ ǸCL A. Then there is a derivation of A from premises in Γ where A

appears under the scope of the premises alone. By induction on line number of
this derivation, we show that for each line i of this derivation, Γi |=CL Ai. The
case when Ai = A is the desired result.
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Basis: A1 is a premise or an assumption. Then Γ1 = {A1}; so v(Γ1) = 1 iff
v(A1) = 1; so there is no v such that v(Γ1) = 1 but v(A1) = 0. So by
VCL, Γ1 |=CL A1.

Assp: For any i, 1 6 i < k, Γi |=CL Ai.

Show: Γk |=CL Ak.
Ak is either a premise, an assumption, or arises from previous lines by
R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I or ≡E. If Ak is a premise or an
assumption, then as in the basis, Γk |=CL Ak. So suppose Ak arises by
one of the rules.

(R)

(⊃I) If Ak arises by ⊃I, then the picture is like this,

P

j Q

k P ⊃ Q

where j < k and Ak is P ⊃ Q. By assumption, Γj |=CL Q; and by the
nature of access, Γj ⊆ Γk ∪ {P}; so by L1.1, Γk ∪ {P} |=CL Q. Suppose
Γk 6|=CL P ⊃ Q; then by VCL, there is some v such that v(Γk) = 1 but
v(P ⊃ Q) = 0; from the latter, by TCL(⊃), v(P) = 1 and v(Q) = 0;
so v(Γk) = 1 and v(P) = 1; so v(Γk ∪ {P}) = 1; so by VCL, v(Q) = 1.
This is impossible; reject the assumption: Γk |=CL P ⊃ Q, which is to say,
Γk |=CL Ak.

(⊃E) If Ak arises by ⊃E, then the picture is like this,

i P ⊃ Q

j P

k Q

where i, j < k and Ak is Q. By assumption, Γi |=CL P ⊃ Q and Γj |=CL P;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L1.1, Γk |=CL P ⊃ Q

and Γk |=CL P. Suppose Γk 6|=CL Q; then by VCL, there is some v such
that v(Γk) = 1 but v(Q) = 0; since v(Γk) = 1, by VCL, v(P ⊃ Q) = 1

and v(P) = 1; from the former, by TCL(⊃), v(P) = 0 or v(Q) = 1; so
v(Q) = 1. This is impossible; reject the assumption: Γk |=CL Q, which is
to say, Γk |=CL Ak.

(∧I)

(∧E)
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(¬I) If Ak arises by ¬I, then the picture is like this,

P

i Q

j ¬Q

k ¬P

where i, j < k and Ak is ¬P. By assumption, Γi |=CL Q and Γj |=CL ¬Q;
but by the nature of access, Γi ⊆ Γk ∪ {P} and Γj ⊆ Γk ∪ {P}; so by L1.1,
Γk ∪ {P} |=CL Q and Γk ∪ {P} |=CL ¬Q. Suppose Γk 6|=CL ¬P; then by VCL,
there is some v such that v(Γk) = 1 but v(¬P) = 0; from the latter, by
TCL(¬), v(P) = 1; so v(Γk) = 1 and v(P) = 1; so v(Γk ∪ {P}) = 1; so by
VCL, v(Q) = 1 and v(¬Q) = 1; from the latter, by TCL(¬), v(Q) = 0.
This is impossible; reject the assumption: Γk |=CL ¬P, which is to say,
Γk |=CL Ak.

(¬E)

(∨I) If Ak arises by ∨I, then the picture is like this,

j P

k P ∨ Q

or
j P

k Q ∨ P

where j < k and Ak is P ∨ Q or Q ∨ P. Consider the first case. By
assumption, Γj |=CL P; but by the nature of access, Γj ⊆ Γk; so by L1.1,
Γk |=CL P. Suppose Γk 6|=CL P ∨Q; then by VCL, there is some v such that
v(Γk) = 1 but v(P∨Q) = 0; since v(Γk) = 1, by VCL, v(P) = 1; but since
v(P ∨ Q) = 0, by TCL(∨), v(P) = 0 and v(Q) = 0. This is impossible;
reject the assumption: Γk |=CL P ∨ Q, which is to say, Γk |=CL Ak. And
similarly when Ak is Q ∨ P.

(∨E) If Ak arises by ∨E, then the picture is like this,

h P ∨ Q

P

i R

Q

j R

k R

where h, i, j < k and Ak is R. By assumption, Γh |=CL P ∨ Q, Γi |=CL R

and Γj |=CL R; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk ∪ {P} and
Γj ⊆ Γk ∪ {Q}; so by L1.1, Γk |=CL P ∨ Q, Γk ∪ {P} |=CL R and Γk ∪ {Q} |=CL R.
Suppose Γk 6|=CL R; then by VCL, there is some v such that v(Γk) = 1
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but v(R) = 0. Since v(Γk) = 1, by VCL, v(P ∨ Q) = 1; so by TCL(∨),
v(P) = 1 or v(Q) = 1. Suppose, for the moment, that v(P) = 1; then
v(Γk) = 1 and v(P) = 1; so v(Γk ∪ {P}) = 1; so by VCL, v(R) = 1; this is
impossible; reject the assumption: v(P) 6= 1; so v(Q) = 1; so v(Γk) = 1

and v(Q) = 1; so v(Γk∪{Q}) = 1; so by VCL, v(R) = 1; this is impossible;
reject the assumption: Γk |=CL R, which is to say, Γk |=CL Ak.

(≡I)

(≡E)
———
For any i, Γi |=CL Ai.

 1.2 NCL is complete: if Γ |=CL A then Γ ǸCL A.

C Γ is  iff there is no A such that Γ ǸCL A and Γ ǸCL ¬A.

L1.2 If Γ 6 ǸCL ¬P, then Γ ∪ {P} is consistent.
Suppose Γ 6 ǸCL ¬P but Γ ∪{P} is inconsistent. Then there is someA such
that Γ ∪ {P} ǸCL A and Γ ∪ {P} ǸCL ¬A. But then we can argue,

1 Γ

2 P A (c, ¬I)

3 A from Γ ∪ {P}

4 ¬A from Γ ∪ {P}

5 ¬P 2-4 ¬I

So Γ ǸCL ¬P. But this is impossible; reject the assumption: if Γ 6 ǸCL ¬P,
then Γ ∪ {P} is consistent.

L1.3 There is an enumeration of all the formulas, A1, A2 . . .

Proof by construction in the usual way.1

M Γ is  iff for any A either Γ ǸCL A or Γ ǸCL ¬A.

C(Γ ′) We construct a Γ ′ from Γ as follows. Set Ω0 = Γ . By L1.3, there is an
enumeration, A1, A2 . . . of all the formulas; for any Ai in this series set,

Ωi = Ωi−1 if Ωi−1 ǸCL ¬Ai

Ωi = Ωi−1 ∪ {Ai} if Ωi−1 6 ǸCL ¬Ai

then
Γ ′ =

⋃
i>0 Ωi

1For this, and extended discussion of the larger argument, see e.g. [12, §11.2].
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L1.4 Γ ′ is maximal.
Suppose Γ ′ is not maximal. Then there is some Ai such that Γ ′ 6 ǸCL Ai

and Γ ′ 6 ǸCL ¬Ai. Whatever i may be, each member of Ωi−1 is in Γ ′; so
if Ωi−1 ǸCL ¬Ai then Γ ′ ǸCL ¬Ai; but Γ ′ 6 ǸCL ¬Ai; so Ωi−1 6 ǸCL ¬Ai;
so by construction, Ωi = Ωi−1 ∪ {Ai}; so by construction, Ai ∈ Γ ′; so
Γ ′ ǸCL Ai. This is impossible; reject the assumption: Γ ′ is maximal.

L1.5 If Γ is consistent, then each Ωi is consistent.
Suppose Γ is consistent.

Basis: Ω0 = Γ and Γ is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either Ωk−1 or Ωk−1 ∪ {Ak}. Suppose the former; by
assumption, Ωk−1 is consistent; so Ωk is consistent. Suppose
the latter; then by construction, Ωk−1 6 ǸCL ¬Ak; so by L1.2,
Ωk−1 ∪ {Ak} is consistent; so Ωk is consistent.

———
For any i, Ωi is consistent.

L1.6 If Γ is consistent, then Γ ′ is consistent.
Suppose Γ is consistent, but Γ ′ is not; from the latter, there is some P

such that Γ ′ ǸCL P and Γ ′ ǸCL ¬P. Consider derivations D1 and D2
of these results and the premises Ai . . . Aj of these derivations. Where
Aj is the last of these premises in the enumeration of formulas, by the
construction of Γ ′, each of Ai . . . Aj must be a member of Ωj; so D1
and D2 are derivations from Ωj; so Ωj is not consistent. But since Γ

is consistent, by L1.5, Ωj is consistent. This is impossible; reject the
assumption: if Γ is consistent then Γ ′ is consistent.

C(v) We construct a CL interpretation v based on Γ ′ as follows. For any
parameter p, set v(p) = 1 iff Γ ′ ǸCL p.

L1.7 If Γ is consistent then for any A, v(A) = 1 iff Γ ′ ǸCL A.
Suppose Γ is consistent. By L1.4, Γ ′ is maximal; by L1.6, Γ ′ is consistent.
Now by induction on the number of operators in A,

Basis: If A has no operators, then it is a parameter p and by construc-
tion, v(p) = 1 iff Γ ′ ǸCL p. So v(A) = 1 iff Γ ′ ǸCL A.

Assp: For any i, 0 6 i < k, if A has i operators, then v(A) = 1 iff
Γ ′ ǸCL A.

Show: If A has k operators, then v(A) = 1 iff Γ ′ ǸCL A.
If A has k operators, then it is of the form ¬P, P ⊃ Q, P ∧ Q,
P ∨ Q or P ≡ Q where P and Q have < k operators.
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(¬) A is ¬P. (i) Suppose v(A) = 1; then v(¬P) = 1; so by TCL(¬),
v(P) = 0; so by assumption, Γ ′ 6 ǸCL P; so by maximality, Γ ′ ǸCL

¬P, where this is to say, Γ ′ ǸCL A. (ii) Suppose Γ ′ ǸCL A; then
Γ ′ ǸCL ¬P; so by consistency, Γ ′ 6 ǸCL P; so by assumption, v(P) =

0; so by TCL(¬), v(¬P) = 1, where this is to say, v(A) = 1. So
v(A) = 1 iff Γ ′ ǸCL A.

(⊃) A is P ⊃ Q. (i) Suppose v(A) = 1 but Γ ′ 6 ǸCL A; then v(P ⊃ Q) =

1 but Γ ′ 6 ǸCL P ⊃ Q. From the latter, by maximality, Γ ′ ǸCL ¬(P ⊃
Q); from this it follows, by simple derivations, that Γ ′ ǸCL P

and Γ ′ ǸCL ¬Q; so by consistency, Γ ′ 6 ǸCL Q; so by assumption,
v(P) = 1 and v(Q) = 0; so by TCL(⊃), v(P ⊃ Q) = 0. This is
impossible; reject the assumption: if v(A) = 1 then Γ ′ ǸCL A.
(ii) Suppose Γ ′ ǸCL A but v(A) = 0; then Γ ′ ǸCL P ⊃ Q but v(P ⊃
Q) = 0. From the latter, by TCL(⊃), v(P) = 1 and v(Q) = 0; so
by assumption, Γ ′ ǸCL P and Γ ′ 6 ǸCL Q; but since Γ ′ ǸCL P ⊃ Q

and Γ ′ ǸCL P, by (⊃E), Γ ′ ǸCL Q. This is impossible; reject the
assumption: if Γ ′ ǸCL A, then v(A) = 1. So v(A) = 1 iff Γ ′ ǸCL A.

(∧)
(∨)
(≡)

———
For any A, v(A) = 1 iff Γ ′ ǸCL A.

L1.8 If Γ is consistent, then v(Γ) = 1.
Suppose Γ is consistent and A ∈ Γ ; then by construction, A ∈ Γ ′; so
Γ ′ ǸCL A; so since Γ is consistent, by L1.7, v(A) = 1. And similarly for
any A ∈ Γ . So v(Γ) = 1.

Main result: Suppose Γ |=CL A but Γ 6 ǸCL A. By (DN), if Γ ǸCL ¬¬A, then
Γ ǸCL A; so Γ 6 ǸCL ¬¬A; so by L1.2, Γ ∪ {¬A} is consistent; so by L1.8, there is a
v constructed as above such that v(Γ ∪ {¬A}) = 1; so v(¬A) = 1; so by TCL(¬),
v(A) = 0; so v(Γ) = 1 and v(A) = 0; so by VCL, Γ 6|=CL A. This is impossible;
reject the assumption: if Γ |=CL A, then Γ ǸCL A.

2   : Kα (. 2,3)
2.1  /  
LKα The  consists of propositional parameters p0, p1 . . . with

the operators, ¬, ∧, ∨, ⊃, ≡, 2 and 3. Each propositional parameter
is a ; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
(A ⊃ B), (A ≡ B), 2A and 3A.
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IKα For any of these systems except Kυ, an  is a triple
〈W,R, v〉 whereW is a set of worlds, R is a subset ofW2 = W ×W, and
v is a function such that for any w ∈ W and p, vw(p) = 1 or vw(p) = 0.
For x, y, z ∈ W, where α is empty or indicates some combination of the
following constraints,
η For any x, there is a y such that xRy extendability
ρ for all x, xRx reflexivity
σ for all x, y, if xRy then yRx symmetry
τ for all x, y, z, if xRy and yRz then xRz transitivity
〈W,R, v〉 is a Kα interpretation when R meets the constraints from α.
For Kυ, a model is just a pair 〈W,v〉.

TK For complex expressions,

(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.
(∧) vw(A ∧ B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.
(∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.
(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.
(3) vw(3A) = 1 if some x ∈ W such that wRx has vx(A) = 1, and 0

otherwise.
(2) vw(2A) = 1 if all x ∈ W such that wRx have vx(A) = 1, and 0

otherwise.
For Kυ, substitute for (3) and (2),
(3)υ vw(3A) = 1 iff for some x ∈ W, vx(A) = 1.
(2)υ vw(2A) = 1 iff for all x ∈ W, vx(A) = 1.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ ; then,

VKα Γ |=Kα A iff there is no Kα interpretation 〈W,R, v〉 (〈W,v〉) and w ∈ W

such that vw(Γ) = 1 and vw(A) = 0.

2.2  : NKα

Where s is any integer, let As be a  . For subscripts s

and t allow also expressions of the sort, s.t. As in Priest, intuitively, subscripts
indicate worlds, where As is true or false at world s, and s.t just in case world s

has access to world t. Derivation rules apply to these expressions. Rules for ¬,
∧, ∨, ⊃, and ≡ are like ones from before, but with consistent subscripts. Rules
for 2 and 3 are new.2

2There is no uniformity about how to do natural deduction in modal logic. Most avoid
subscripts altogether. Another option uses subscripts of the sort i.j . . . k (cf. prefixes on tableaux
in [2]); the result is elegant, but not so flexible as this account inspired by Priest, and we will
need the flexibility, as we approach increasingly complex systems.
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R Ps

Ps

¬I Ps

Qt

¬Qt

¬Ps

¬E ¬Ps

Qt

¬Qt

Ps

∧I Ps

Qs

(P ∧ Q)s

∧E (P ∧ Q)s

Ps

∧E (P ∧ Q)s

Qs

∨I Ps

(P ∨ Q)s

∨I Ps

(Q ∨ P)s

⊃I Ps

Qs

(P ⊃ Q)s

⊃E (P ⊃ Q)s

Ps

Qs

∨E (P ∨ Q)s

Ps

Rt

Qs

Rt

Rt

≡I Ps

Qs

Qs

Ps

(P ≡ Q)s

≡E (P ≡ Q)s

Ps

Qs

≡E (P ≡ Q)s

Qs

Ps

2I s.t

Pt

2Ps

where t does not appear in any
undischarged premise or assump-
tion

2E 2Ps

s.t

Pt

3I Pt

s.t

3Ps

3E 3Ps

s.t

Pt

Qu

Qu

where t does not appear in any
undischarged premise or assump-
tion and is not u

These are the rules of NK. Other systems NKα add from the following, for
access manipulation, according to constraints in α.

AMη s.t

Pu

Pu

where t does not appear in any
undischarged premise or assump-
tion and is not u

AMρ

s.s

AMσ s.t

t.s

AMτ s.t

t.u

s.u
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AMρ has no premise. For NKυ, eliminate expressions of the sort s.t and rules
for access manipulation. Let > be an arbitrary tautology (say, p ⊃ p). Then for
2I, 2E, 3I and 3E, substitute,

2Iυ >t

Pt

2Ps

where t does not appear in any
undischarged premise or assump-
tion

2Eυ 2Ps

Pt

3Iυ Pt

3Ps

3Eυ 3Ps

Pt

Qu

Qu

where t does not appear in any
undischarged premise or assump-
tion and is not u

In these systems, every subscript is 0, appears in a premise, or appears in the
t-place of an accessible assumption for 2I, 3E, (2Iυ, 3Eυ) or AMη. Where
Γ is a set of unsubscripted formulas, let Γ0 be those same formulas, each with
subscript 0. Then,

NKα Γ ǸKα A iff there is an NKα derivation of A0 from the members of Γ0.

Derived rules carry over from NCL as one would expect, with subscripts
constant throughout. Thus, e.g.,

MT (P ⊃ Q)s

¬Qs

¬Ps

Impl (P ⊃ Q)s / . (¬P ∨ Q)s

(¬P ⊃ Q)s / . (P ∨ Q)s

As examples, here are some derivations which exhibit left-hand forms of
the following additional rule for modal negation,

MN 2Ps / . ¬3¬Ps ¬2Ps / . 3¬Ps

3Ps / . ¬2¬Ps ¬3Ps / . 2¬Ps

as derived in NK (and so any NKα, excluding NKυ, though this could be easily
demonstrated as well).

¬3¬P ǸK 2P

1 ¬3¬P0 P

2 0.1 A (g, 2I)

3 ¬P1 A (c, ¬E)

4 3¬P0 2,3 3I
5 ¬3¬P0 1 R
6 P1 3-5 ¬E
7 2P0 2-6 2I

2P ǸK ¬3¬P

1 2P0 P

2 3¬P0 A (c, ¬I)

3 0.1 A (g, 2 3E)
4 ¬P1

5 3¬P0 A (c, ¬I)

6 ¬P1 4 R
7 P1 1,3 2E
8 ¬3¬P0 5-7 ¬I
9 ¬3¬P0 2,3-8 3E
10 3¬P0 2 R
11 ¬3¬P0 2-10 ¬I
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¬2¬P ǸK 3P

1 ¬2¬P0 P

2 ¬3P0 A (c, ¬E)

3 0.1 A (g, 2I)

4 P1 A (c, ¬I)

5 3P0 3,4 3I
6 ¬3P0 2 R
7 ¬P1 4-6 ¬I
8 2¬P0 3-7 2I
9 ¬2¬P0 1 R
10 3P0 2-9 ¬E

3P ǸK ¬2¬P

1 3P0 P

2 0.1 A (g, 1 3E)
3 P1

4 2¬P0 A (c, ¬I)

5 ¬P1 2,4 2E
6 P1 3 R
7 ¬2¬P0 4-6 ¬I
8 ¬2¬P0 1,2-7 3E

For examples in other systems, here are demonstrations of some characteristic
principles:

ǸKη 2P ⊃ 3P

1 2P0 A (g, ⊃I)

2 0.1 A (g, AMη)

3 P1 1,2 2E
4 3P0 2,3 3I
5 3P0 2-4 AMη

6 (2P ⊃ 3P)0 1-5 ⊃I

ǸKρ 2P ⊃ P

1 2P0 A (g, ⊃I)

2 0.0 AMρ

3 P0 1,2 2E
4 (2P ⊃ P)0 1-3 ⊃I

ǸKσ P ⊃ 23P

1 P0 A (g, ⊃I)

2 0.1 A (g, 2I)

3 1.0 2 AMσ

4 3P1 1,3 3I
5 23P0 2-4 2I
6 (P ⊃ 23P)0 1-5 ⊃I

ǸKτ 2P ⊃ 22P

1 2P0 A (g, ⊃I)

2 0.1 A (g, 2I)

3 1.2 A (g, 2I)

4 0.2 2,3 AMτ

5 P2 1,4 2E
6 2P1 3-5 2I
7 22P0 2-6 2I
8 (2P ⊃ 22P)0 1-7 ⊃I
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ǸKστ 3P ⊃ 23P

1 3P0 A (g, ⊃I)

2 0.1 A (g, 1 3E)
3 P1

4 0.2 A (g, 2I)

5 2.0 4 AMσ

6 2.1 5,2 AMτ

7 3P2 3,6 3I
8 23P0 4-7 2I
9 23P0 1,2-8 3E
10 (3P ⊃ 23P)0 1-9 ⊃I

ǸKυ 3P ⊃ 23P

1 3P0 A (g, ⊃I)

2 P1 A (g, 1 3E)

3 >2 A (g, 2I)

4 3P2 2 3I
5 23P0 3-4 2I
6 23P0 1,2-5 3E
7 (3P ⊃ 23P)0 1-6 ⊃I

2.3   
Preliminaries (excluding NKυ): Begin with generalized notions of validity. For
a model 〈W,R, v〉, let m be a map from subscripts into W. Say 〈W,R, v〉m is
〈W,R, v〉 withmapm. Then, where Γ is a set of expressions of our language for
derivations, vm(Γ) = 1 iff for each As ∈ Γ , vm(s)(A) = 1, and for each s.t ∈
Γ , 〈m(s),m(t)〉 ∈ R. Now expand notions of validity to include subscripted
formulas, and alternate expressions as indicated in double brackets.

VKα* Γ |=∗
Kα As [[s.t]] iff there is no Kα interpretation 〈W,R, v〉m such that

vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R]].

NKα* Γ `∗NKα As [[s.t]] iff there is an NKα derivation of As [[s.t]] from the
members of Γ .

These notions reduce to the standard ones when all the members of Γ and A

have subscript 0 (and so do not include expressions of the sort s.t). This is
obvious for NKα*. In the other case, there is a 〈W,R, v〉m that makes all the
members of Γ0 true and A0 false just in case there is a world in 〈W,R, v〉 that
makes the unsubscripted members of Γ true and A false. For the following,
cases omitted are like ones worked, and so left to the reader.

 2.1 NKα is sound: If Γ ǸKα A then Γ |=Kα A.

L2.1 If Γ ⊆ Γ ′ and Γ |=∗
Kα Ps [[s.t]], then Γ ′ |=∗

Kα Ps [[s.t]].
Suppose Γ ⊆ Γ ′ and Γ |=∗

Kα Ps [[s.t]], but Γ ′ 6|=∗
Kα Ps [[s.t]]. From the latter, by

VKα*, there is some Kα interpretation 〈W,R, v〉m such that vm(Γ ′) = 1

but vm(s)(P) = 0 [[〈m(s),m(t)〉 6∈ R]]. But since vm(Γ ′) = 1 and Γ ⊆ Γ ′,
vm(Γ) = 1; so vm(Γ) = 1 but vm(s)(P) = 0 [[〈m(s),m(t)〉 6∈ R]]; so by
VKα*, Γ 6|=∗

Kα Ps [[s.t]]. This is impossible; reject the assumption: if
Γ ⊆ Γ ′ and Γ |=∗

Kα Ps [[s.t]], then Γ ′ |=∗
Kα Ps [[s.t]].
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Main result: For each line in a derivation let Pi be the expression on line i

and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NKα P then Γ |=∗

Kα P. As
above, this reduces to the standard result when P and all the members of Γ are
formulas with subscript 0. Suppose Γ `∗NKα P. Then there is a derivation of P

from premises in Γ where P appears under the scope of the premises alone. By
induction on line number of this derivation, we show that for each line i of this
derivation, Γi |=∗

Kα Pi. The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[s.t]]. Then Γ1 = {As} [[{s.t}]]; so for
any 〈W,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[〈m(s),m(t)〉 ∈ R]]; so there
is no 〈W,R, v〉m such that vm(Γ1) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈
R]]. So by VKα*, Γ1 |=∗

Kα As [[s.t]], where this is just to say, Γ1 |=∗
Kα P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Kα Pi.

Show: Γk |=∗
Kα Pk.

Pk is either a premise, an assumption, or arises from previous lines by R,
⊃I,⊃E,∧I,∧E, ¬I, ¬E,∨I,∨E,≡I,≡E,2I,2E,3I,3E or, depending
on the system, AMη, AMρ, AMσ or AMτ. If Pk is a premise or an
assumption, then as in the basis, Γk |=∗

Kα Pk. So suppose Pk arises by
one of the rules.

(R)

(⊃I)

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s

j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗
Kα (A ⊃ B)s and

Γj |=∗
Kα As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L2.1,

Γk |=∗
Kα (A ⊃ B)s and Γk |=∗

Kα As. Suppose Γk 6|=∗
Kα Bs; then by VKα*,

there is some Kα interpretation 〈W,R, v〉m such that vm(Γk) = 1 but
vm(s)(B) = 0; since vm(Γk) = 1, by VKα*, vm(s)(A ⊃ B) = 1 and
vm(s)(A) = 1; from the former, by TK(⊃), vm(s)(A) = 0 or vm(s)(B) =

1; so vm(s)(B) = 1. This is impossible; reject the assumption: Γk |=∗
Kα Bs,

which is to say, Γk |=∗
Kα Pk.

(∧I)

(∧E)
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(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt

j ¬Bt

k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗
Kα Bt and Γj |=∗

Kα

¬Bt; but by the nature of access, Γi ⊆ Γk ∪ {As} and Γj ⊆ Γk ∪ {As};
so by L2.1, Γk ∪ {As} |=∗

Kα Bt and Γk ∪ {As} |=∗
Kα ¬Bt. Suppose Γk 6|=∗

Kα

¬As; then by VKα*, there is a Kα interpretation 〈W,R, v〉m such that
vm(Γk) = 1 but vm(s)(¬A) = 0; so by TK(¬), vm(s)(A) = 1; so vm(Γk) =

1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VKα*, vm(t)(B) = 1

and vm(t)(¬B) = 1; from the latter, by TK(¬), vm(t)(B) = 0. This is
impossible; reject the assumption: Γk |=∗

Kα ¬As, which is to say, Γk |=∗
Kα

Pk.

(¬E)

(∨I)

(∨E) If Pk arises by ∨E, then the picture is like this,

h (A ∨ B)s

As

i Ct

Bs

j Ct

k Ct

where h, i, j < k and Pk is Ct. By assumption, Γh |=∗
Kα (A∨B)s, Γi |=∗

Kα Ct

and Γj |=∗
Kα Ct; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk ∪ {As} and

Γj ⊆ Γk ∪ {Bs}; so by L2.1, Γk |=∗
Kα (A ∨ B)s, Γk ∪ {As} |=∗

Kα Ct and
Γk ∪ {Bs} |=∗

Kα Ct. Suppose Γk 6|=∗
Kα Ct; then by VKα*, there is some Kα

interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(t)(C) = 0. Since
vm(Γk) = 1, by VKα*, vm(s)(A ∨ B) = 1; so by TK(∨), vm(s)(A) = 1

or vm(s)(B) = 1. Suppose, for the moment, that vm(s)(A) = 1; then
vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VKα*,
vm(t)(C) = 1; this is impossible; reject the assumption: vm(s)(A) 6= 1;
so vm(s)(B) = 1; so vm(Γk) = 1 and vm(s)(B) = 1; so vm(Γk ∪ {Bs}) = 1;
so by VKα*, vm(t)(C) = 1; this is impossible; reject the assumption:
Γk |=∗

Kα Ct, which is to say, Γk |=∗
Kα Pk.

(≡I)
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(≡E)

(2I) If Pk arises by 2I, then the picture is like this,

s.t

i At

k 2As

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is 2As. By assumption, Γi |=∗

Kα At;
but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by L2.1, Γk ∪ {s.t} |=∗

Kα

At. Suppose Γk 6|=∗
Kα 2As; then by VKα*, there is a Kα interpretation

〈W,R, v〉m such that vm(Γk) = 1 but vm(s)(2A) = 0; so by TK(2), there
is some w ∈ W such thatm(s)Rw and vw(A) = 0. Now consider a map
m′ likem except thatm′(t) = w, and consider 〈W,R, v〉m′ ; since t does
not appear in Γk, it remains that vm′(Γk) = 1; and since m′(t) = w and
m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t}) = 1; so by VKα*,
vm′(t)(A) = 1. But m′(t) = w; so vw(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Kα 2As, which is to say, Γk |=∗
Kα Pk.

(2E) If Pk arises by 2E, then the picture is like this,

i 2As

j s.t

k At

where i, j < k and Pk is At. By assumption, Γi |=∗
Kα 2As and Γj |=∗

Kα s.t;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L2.1, Γk |=∗

Kα 2As

and Γk |=∗
Kα s.t. Suppose Γk 6|=∗

Kα At; then by VKα*, there is some Kα

interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(t)(A) = 0; since
vm(Γk) = 1, by VKα*, vm(s)(2A) = 1 and 〈m(s),m(t)〉 ∈ R; from the
first of these, by TK(2), any w such that m(s)Rw has vw(A) = 1; so
vm(t)(A) = 1. This is impossible; reject the assumption: Γk |=∗

Kα At,
which is to say, Γk |=∗

Kα Pk.

(3I)

(3E) If Pk arises by 3E, then the picture is like this,

i 3As

At

s.t

j Bu

k Bu
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where i, j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Bu. By assump-
tion, Γi |=∗

Kα 3As and Γj |=∗
Kα Bu; but by the nature of access, Γi ⊆ Γk and

Γj ⊆ Γk∪ {At, s.t}; so by L2.1, Γk |=∗
Kα 3As and Γk∪ {At, s.t} |=∗

Kα Bu. Sup-
pose Γk 6|=∗

Kα Bu; then by VKα*, there is a Kα interpretation 〈W,R, v〉m
such that vm(Γk) = 1 but vm(u)(B) = 0; since vm(Γk) = 1, by VKα*,
vm(s)(3A) = 1; so by TK(3), there is some w ∈ W such that m(s)Rw

and vw(A) = 1. Now consider a map m′ like m except that m′(t) = w,
and consider 〈W,R, v〉m′ ; since t does not appear in Γk, it remains that
vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w, vm′(t)(A) = 1 and
〈m′(s),m′(t)〉 ∈ R; so vm′(Γk∪{At, s.t}) = 1; so by VKα*, vm′(u)(B) = 1.
But since t 6= u, m′(u) = m(u); so vm(u)(B) = 1. This is impossible;
reject the assumption: Γk |=∗

Kα Bu, which is to say, Γk |=∗
Kα Pk.

(AMη) If Pk arises by AMη, then the picture is like this,

s.t

i Au

k Au

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption) and is not u, and Pk is Au. Where this rule is
included in NKα, Kα includes condition η. By assumption, Γi |=∗

Kα Au;
but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by L2.1, Γk ∪ {s.t} |=∗

Kα

Au. Suppose Γk 6|=∗
Kα Au; then by VKα*, there is a Kα interpretation

〈W,R, v〉m such that vm(Γk) = 1 but vm(u)(A) = 0. By condition η,
there is a w ∈ W such that m(s)Rw; consider a map m′ like m except
that m′(t) = w, and consider 〈W,R, v〉m′ ; since t does not appear in Γk,
it remains that vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w,
〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t}) = 1; so by VKα*, vm′(u)(A) = 1.
But since t 6= u, m′(u) = m(u); so vm(u)(A) = 1. This is impossible;
reject the assumption: Γk |=∗

Kα Au, which is to say, Γk |=∗
Kα Pk.

(AMρ) If Pk arises by AMρ, then the picture is like this,

k s.s

where Pk is s.s. Where this rule is in NKα, Kα includes condition ρ.
Suppose Γk 6|=∗

Kα s.s; then by VKα*, there is some Kα interpretation
〈W,R, v〉m such that vm(Γk) = 1 but 〈m(s),m(s)〉 6∈ R. But by condition
ρ, for any x ∈ W, 〈x, x〉 ∈ R; so 〈m(s),m(s)〉 ∈ R. This is impossible;
reject the assumption: Γk |=∗

Kα s.s, which is to say, Γk |=∗
Kα Pk.

(AMσ) If Pk arises by AMσ, then the picture is like this,
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i s.t

k t.s

where i < k and Pk is t.s. Where this rule is in NKα, Kα includes
condition σ. By assumption, Γi |=∗

Kα s.t; but by the nature of access,
Γi ⊆ Γk; so by L2.1, Γk |=∗

Kα s.t. Suppose Γk 6|=∗
Kα t.s; then by VKα*,

there is some Kα interpretation 〈W,R, v〉m such that vm(Γk) = 1 but
〈m(t),m(s)〉 6∈ R; since vm(Γk) = 1, by VKα*, 〈m(s),m(t)〉 ∈ R; and by
condition σ, for any 〈x, y〉 ∈ R, 〈y, x〉 ∈ R; so 〈m(t),m(s)〉 ∈ R. This is
impossible; reject the assumption: Γk |=∗

Kα t.s, which is to say, Γk |=∗
Kα Pk.

(AMτ) If Pk arises by AMτ, then the picture is like this,

i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. Where this rule is in NKα, Kα includes
condition τ. By assumption, Γi |=∗

Kα s.t and Γj |=∗
Kα t.u; but by the nature

of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L2.1, Γk |=∗
Kα s.t and Γk |=∗

Kα t.u.
Suppose Γk 6|=∗

Kα s.u; then by VKα*, there is some Kα interpretation
〈W,R, v〉m such that vm(Γk) = 1 but 〈m(s),m(u)〉 6∈ R; since vm(Γk) =

1, by VKα*, 〈m(s),m(t)〉 ∈ R and 〈m(t),m(u)〉 ∈ R; and by condition
τ, for any 〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 ∈ R; so 〈m(s),m(u)〉 ∈ R. This is
impossible; reject the assumption: Γk |=∗

Kα s.u, which is to say, Γk |=∗
Kα Pk.

———
For any i, Γi |=∗

Kα Pi.

The argument for NKυ is similar (simpler) and so omitted.

 2.2 NKα is complete: if Γ |=Kα A then Γ ǸKα A.

Suppose Γ |=Kα A; then Γ0 |=∗
Kα A0; we show that Γ0 `∗NKα A0. Again, this reduces

to the standard notion. The method of our proof has advantages (especially
for the quantificational case) over standard approaches to completeness for
modal logic. Roughly, we construct a single set which is maximal and consistent
relative to subscripted formulas, and use this to specify the model. The resultant
proof is thus kept structurally parallel to the classical case. For the following,
fix on some particular constraint(s) α. Then definitions of consistency etc. are
relative to it.

C Γ is  iff there is no As such that Γ `∗NKα As and Γ `∗NKα ¬As.

L2.2 If s is 0 or appears in Γ , and Γ 6`∗NKα ¬Ps, then Γ ∪ {Ps} is consistent.
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Suppose s is 0 or appears in Γ and Γ 6`∗NKα ¬Ps but Γ ∪ {Ps} is inconsistent.
Then there is some At such that Γ ∪ {Ps} `∗NKα At and Γ ∪ {Ps} `∗NKα ¬At.
But then we can argue,

1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}

4 ¬At from Γ ∪ {Ps}

5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in Γ ;
so Γ `∗NKα ¬Ps. But this is impossible; reject the assumption: if s is 0 or
introduced in Γ and Γ 6`∗NKα ¬Ps, then Γ ∪ {Ps} is consistent.

L2.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction: Order non-subscripted formulas A, B, C . . . in
the usual way. Then form a grid with formulasA, B, C . . . ordered across
the top, and subscripts 1, 2, 3 . . . down the side.

A1 → B1 C1

↙ ↗
A2 B2 C2

↓ ↗
A3 B3 C3

...

. . .

Order the members of the resultant grid, A1, B1, A2 . . . moving along
the arrows from the upper left corner, down and to the right.3

M Γ is  - iff for any As either Γ `∗NKα As or Γ `∗NKα ¬As.

S Γ is a  set iff for every formula of the form ¬2As, if Γ `∗NKα

¬2As then there is some t such that Γ `∗NKα s.t and Γ `∗NKα ¬At.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L2.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included inΩi−1, let Ei

be like Ei−1 but without As, and set,
3As for rational numbers; see, e.g., [12, §2.1.1].
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Ωi = Ωi−1 if Ωi−1 `∗NKα ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NKα ¬As

and
Ωi = Ωi∗ if As is not of the form ¬2Ps

Ωi = Ωi∗ ∪ {s.t,¬Pt} if As is of the form ¬2Ps

-where t is the first subscript not included in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L2.4 For any s included in Γ ′, Γ ′ is s-maximal.
Suppose s is included in Γ ′ but Γ ′ is not s-maximal. Then there is some
As such that Γ ′ 6`∗NKα As and Γ ′ 6`∗NKα ¬As. For any i, each member of
Ωi−1 is in Γ ′; so if Ωi−1 `∗NKα ¬As then Γ ′ `∗NKα ¬As; but Γ ′ 6`∗NKα ¬As;
so Ωi−1 6`∗NKα ¬As; so since s is included in Γ ′, there is a stage in the
construction that sets Ωi∗ = Ωi−1 ∪ {As}; so by construction, As ∈ Γ ′;
so Γ ′ `∗NKα As. This is impossible; reject the assumption: Γ ′ is s-maximal.

L2.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {As} or (iii) Ωk∗ ∪
{s.t,¬Pt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is

0 or in Ωk−1 and Ωk−1 6`∗NKα ¬As; so by L2.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t,¬Pt}. In this case, as above, Ωk∗
is consistent and by construction, ¬2Ps ∈ Ωk∗ . Suppose Ωk

is inconsistent. Then there are Au and ¬Au such that Ωk∗ ∪
{s.t,¬Pt} `∗NKα Au and Ωk∗ ∪ {s.t,¬Pt} `∗NKα ¬Au. So reason as
follows,
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1 Ωk∗

2 s.t A (g, 2I)

3 ¬Pt A (c, ¬E)

4 Au from Ωk∗ ∪ {s.t,¬Pt}

5 ¬Au from Ωk∗ ∪ {s.t,¬Pt}

6 Pt 3-5 ¬E
7 2Ps 2-6 2I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NKα 2Ps; but
¬2Ps ∈ Ωk∗ ; so Ωk∗ `∗NKα ¬2Ps; so Ωk∗ is inconsistent. This is
impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.

L2.6 If Γ0 is consistent, then Γ ′ is consistent.
Suppose Γ0 is consistent, but Γ ′ is not; from the latter, there is some
Ps such that Γ ′ `∗NKα Ps and Γ ′ `∗NKα ¬Ps. Consider derivations D1 and
D2 of these results, and the premises Pi . . .Pj of these derivations. By
construction, there is an Ωk with each of these premises as a member;
so D1 and D2 are derivations from Ωk; so Ωk is not consistent. But
since Γ0 is consistent, by L2.5, Ωk is consistent. This is impossible;
reject the assumption: if Γ0 is consistent then Γ ′ is consistent.

L2.7 If Γ0 is consistent, then Γ ′ is a scapegoat set.
Suppose Γ0 is consistent and Γ ′ `∗NKα ¬2Ps. By L2.6, Γ ′ is consistent;
and by the constraints on subscripts, s is included in Γ ′. Since Γ ′ is con-
sistent, Γ ′ 6`∗NKα ¬¬2Ps; so there is a stage in the construction process
where Ωi∗ = Ωi−1 ∪ {¬2Ps} and Ωi = Ωi∗ ∪ {s.t,¬Pt}; so by construc-
tion, s.t ∈ Γ ′ and ¬Pt ∈ Γ ′; so Γ ′ `∗NKα s.t and Γ ′ `∗NKα ¬Pt. So Γ ′ is a
scapegoat set.

C(I) We construct an interpretation I = 〈W,R, v〉 based on Γ ′ as follows. Let
W have a member ws corresponding to each subscript s included in Γ ′.
Then set 〈ws, wt〉 ∈ R iff Γ ′ `∗NKα s.t and vws(p) = 1 iff Γ ′ `∗NKα ps.

L2.8 If Γ0 is consistent then for 〈W,R, v〉 constructed as above, and for any s

included in Γ ′, vws(A) = 1 iff Γ ′ `∗NKα As.
Suppose Γ0 is consistent and s is included in Γ ′. By L2.4, Γ ′ is s-maximal.
By L2.6 and L2.7, Γ ′ is consistent and a scapegoat set. Now by induc-
tion on the number of operators in As,

Basis: IfAs has no operators, then it is a parameter ps and by construc-
tion, vws(p) = 1 iff Γ ′ `∗NKα ps. So vws(A) = 1 iff Γ ′ `∗NKα As.

Assp: For any i, 0 6 i < k, if As has i operators, then vws(A) = 1 iff
Γ ′ `∗NKα As.
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Show: If As has k operators, then vws(A) = 1 iff Γ ′ `∗NKα As.
If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧ Q)s, (P ∨ Q)s, (P ≡ Q)s, 2Ps or 3Ps where P and Q have
< k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P) = 1; so by
TK(¬), vws(P) = 0; so by assumption, Γ ′ 6`∗NKα Ps; so by s-
maximality, Γ ′ `∗NKα ¬Ps, where this is to say, Γ ′ `∗NKα As. (ii) Sup-
pose Γ ′ `∗NKα As; then Γ ′ `∗NKα ¬Ps; so by consistency, Γ ′ 6`∗NKα Ps;
so by assumption, vws(P) = 0; so by TK(¬), vws(¬P) = 1, where
this is to say, vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NKα As.

(⊃) As is (P ⊃ Q)s. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NKα As; then
vws(P ⊃ Q) = 1 but Γ ′ 6`∗NKα (P ⊃ Q)s. From the latter, by s-
maximality, Γ ′ `∗NKα ¬(P ⊃ Q)s; from this it follows, by simple
derivations, that Γ ′ `∗NKα Ps and Γ ′ `∗NKα ¬Qs; so by consistency,
Γ ′ 6`∗NKα Qs; so by assumption, vws(P) = 1 and vws(Q) = 0; so by
TK(⊃), vws(P ⊃ Q) = 0. This is impossible; reject the assump-
tion: if vws(A) = 1 then Γ ′ `∗NKα As.
(ii) Suppose Γ ′ `∗NKα As but vws(A) = 0; then Γ ′ `∗NKα (P ⊃ Q)s

but vws(P ⊃ Q) = 0. From the latter, by TK(⊃), vws(P) = 1

and vws(Q) = 0; so by assumption, Γ ′ `∗NKα Ps and Γ ′ 6`∗NKα Qs;
but since Γ ′ `∗NKα (P ⊃ Q)s and Γ ′ `∗NKα Ps, by (⊃E), Γ ′ `∗NKα Qs.
This is impossible; reject the assumption: if Γ ′ `∗NKα As, then
vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NKα As.

(∧)
(∨)
(≡)
(2) As is 2Ps. (i) Suppose that vws(A) = 1 but Γ ′ 6`∗NKα As; then

vws(2P) = 1 but Γ ′ 6`∗NKα 2Ps. From the latter, by s-maximality,
Γ ′ `∗NKα ¬2Ps; so, since Γ ′ is a scapegoat set, there is some t

such that Γ ′ `∗NKα s.t and Γ ′ `∗NKα ¬Pt; from the first, by con-
struction, 〈ws, wt〉 ∈ R; and from the second, by consistency,
Γ ′ 6`∗NKα Pt; so by assumption, vwt(P) = 0; but wsRwt; so by
TK(2), vws(2P) = 0. This is impossible; reject the assumption:
if vws(A) = 1, then Γ ′ `∗NKα As.
(ii) Suppose Γ ′ `∗NKα As but vws(A) = 0; then Γ ′ `∗NKα 2Ps but
vws(2P) = 0. From the latter, by TK(2), there is some wt ∈ W

such that wsRwt and vwt(P) = 0; so by assumption, Γ ′ 6`∗NKα Pt;
but since wsRwt, by construction, Γ ′ `∗NKα s.t; so by (2E), Γ ′ `∗NKα

Pt. This is impossible; reject the assumption: if Γ ′ ǸKα As then
vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NKα As.

(3) As is 3Ps. (i) Suppose vws(A) = 1; then vws(3P) = 1; so by
TK(3), there is some wt ∈ W such that wsRwt and vwt(P) = 1;
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so by assumption, Γ ′ `∗NKα Pt; but since wsRwt, by construction,
Γ ′ `∗NKα s.t; so by (3I), Γ ′ `∗NKα 3Ps; so Γ ′ `∗NKα As.
(ii)Suppose Γ ′ `∗NKα As; then Γ ′ `∗NKα 3Ps; so by (MN), Γ ′ `∗NKα

¬2¬Ps; so, since Γ ′ is a scapegoat set, there is some t such
that Γ ′ `∗NKα s.t and Γ ′ `∗NKα ¬¬Pt; so by (DN), Γ ′ `∗NKα Pt; so
by assumption, vwt(P) = 1; but Γ ′ `∗NKα s.t; so by construc-
tion, wsRwt; so by TK(3), vws(3P) = 1; so vws(A) = 1. So
vws(A) = 1 iff Γ ′ `∗NKα As.

———
For any As, vws(A) = 1 iff Γ ′ `∗NKα As.

L2.9 If Γ0 is consistent, then 〈W,R, v〉 constructed as above is a Kα interpret-
ation.
In each case, we need to show that the interpretation meets the condi-
tion(s) α. Suppose Γ0 is consistent.

(η) Suppose α includes condition η and that ws ∈ W. Then, by
construction, s is a subscript in Γ ′; so by reasoning as follows,
1 Γ ′

2 s.t A (g, AMη)

3 >t > is a tautology
4 3>s 2,3 3I
5 3>s 2-4 AMη

6 ¬2¬>s 5 MN

Γ ′ `∗NKα ¬2¬>s; but by L2.7, Γ ′ is a scapegoat set; so there is a t

such that Γ ′ `∗NKα s.t; so by construction, 〈ws, wt〉 ∈ R and η is
satisfied.

(ρ) Suppose α includes condition ρ and ws ∈ W. Then by con-
struction, s is a subscript in Γ ′; so by (AMρ), Γ ′ `∗NKα s.s; so by
construction, 〈ws, ws〉 ∈ R and ρ is satisfied.

(σ) Suppose α includes condition σ and 〈ws, wt〉 ∈ R. Then by con-
struction, Γ ′ `∗NKα s.t so by (AMσ), Γ ′ `∗NKα t.s; so by construction,
〈wt, ws〉 ∈ R and σ is satisfied.

(τ) Suppose α includes condition τ and 〈ws, wt〉, 〈wt, wu〉 ∈ R. Then
by construction, Γ ′ `∗NKα s.t and Γ ′ `∗NKα t.u; so by (AMτ), Γ ′ `∗NKα

s.u; so by construction, 〈ws, wu〉 ∈ R and τ is satisfied.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.

L2.10 If Γ0 is consistent, then vm(Γ0) = 1.
Suppose Γ0 is consistent and A0 ∈ Γ0; then by construction, A0 ∈ Γ ′; so
Γ ′ `∗NKα A0; so since Γ0 is consistent, by L2.8, vw0

(A) = 1. And similarly
for any A0 ∈ Γ0. Butm(0) = w0; so vm(Γ0) = 1.
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Main result: Suppose Γ |=Kα A but Γ 6 ǸKα A. Then Γ0 |=∗
Kα A0 but Γ0 6`∗NKα A0. By

(DN), if Γ0 `∗NKα ¬¬A0, then Γ0 `∗NKα A0; so Γ0 6`∗NKα ¬¬A0; so by L2.2, Γ0∪ {¬A0}

is consistent; so by L2.9 and L2.10, there is a Kα interpretation 〈W,R, v〉m
constructed as above such that vm(Γ0 ∪ {¬A0}) = 1; so vm(0)(¬A) = 1; so by
TK(¬), vm(0)(A) = 0; so vm(Γ0) = 1 and vm(0)(A) = 0; so by VKα∗, Γ0 6|=∗

Kα A0.
This is impossible; reject the assumption: if Γ |=Kα A, then Γ ǸKα A.

The argument for NKυ is similar, and so omitted.

3 -  : Nα (. 4)
3.1  /  
LNα The basic language is the same as for Kα. The  consists of

propositional parameters p0, p1 . . . with the operators, ¬, ∧, ∨, ⊃, ≡,
2 and 3. Each propositional parameter is a ; if A and B are
formulas, so are ¬A, (A ∧ B), (A ∨ B), (A ⊃ B), (A ≡ B), 2A and 3A.
In addition, we introduce (A −3 B) as an abbreviation for 2(A ⊃ B).

INα An  is 〈W,N,R, v〉 where N ⊆ W. N is the set of
normal worlds. Constraints on access are as for Kα. Thus, where α is
empty or indicates some combination of the following constraints,
η For any x, there is a y such that xRy extendability
ρ for all x, xRx reflexivity
σ for all x, y, if xRy then yRx symmetry
τ for all x, y, z, if xRy and yRz then xRz transitivity
〈W,N,R, v〉 is an Nα interpretation when R meets the constraints from
α.

TN For complex expressions,

(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.
(∧) vw(A ∧ B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.
(∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.
(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.
(3) vw(3A) = 1 ifw /∈ N or some x ∈ W such thatwRx has vx(A) = 1,

and 0 otherwise.
(2) vw(2A) = 1 ifw ∈ N and all x ∈ W such thatwRx have vx(A) = 1,

and 0 otherwise.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ ; then,

VNα Γ |=Nα A iff there is no Nα interpretation 〈W,N,R, v〉 and w ∈ N such
that vw(Γ) = 1 and vw(A) = 0.
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3.2  : NNα

All the rules are as in NKα except that whenever a subscript s.t is introduced
for 2I or 3E, either s is 0, or there is an additional premise of the sort 2As,
or ¬3As. The resulting change in constraints on these rules is small.

2I s.t

Pt

2Ps

where s is 0 or appears in some accessible 2As or
¬3As , and t does not appear in any undischarged
premise or assumption

3E 3Ps

s.t

Pt

Qu

Qu

where s is 0 or appears in some accessible 2As or
¬3As , and t does not appear in any undischarged
premise or assumption and is not u

Derived rules carry over from NKα. Note that MN remains as well. In
addition, the following are derived rules for −3I and −3E in eitherNKα orNNα.

−3I s.t

Pt

Qt

(P −3 Q)s

constraints on s and t as for the corresponding NN or
NK2I rule.

−3E (P −3 Q)s

s.t

Pt

Qt

We exhibit the new restrictions by considering derivations to show one part of
MN, that 3Ps ǸNα ¬2¬Ps. In the case where s 6= 0, the derivation on the left
violates the restriction on 3E in its last line.

1 3Ps P

2 s.t A (g, 1 3E)
3 Pt

4 2¬Ps A (c, ¬I)

5 ¬Pt 2,4 2E
6 Pt 3 R
7 ¬2¬Ps 4-6 ¬I
8 ¬2¬Ps 1,2-7 3E

1 3Ps P

2 2¬Ps A (c, ¬I)

3 s.t A (g, 1 3E)
4 Pt

5 2¬Ps A (c, ¬I)

6 ¬Pt 3,5 2E
7 Pt 4 R
8 ¬2¬Ps 5-7 ¬I
9 ¬2¬Ps 2,1,3-8 3E
10 2¬Ps 2 R
11 ¬2¬Ps 2-10 ¬I

Supposing s is 0, each derivation is fine. However, if s is other than 0, on the
left, (8) violates the restriction on 3E, insofar as there is no accessible 2Ps or
¬3Ps. On the right, we get around the problem by making the assumption for
¬I prior to that for 3E. Note that, in this case, we cite the line with 2As for
3E. Other derivations for MN go through as in the previous section.
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3.3   
Preliminaries: Begin with generalized notions of validity. For amodel 〈W,N,R, v〉,
let m be a map from subscripts into W such that m(0) is some member of
N. Say 〈W,N,R, v〉m is 〈W,N,R, v〉 with map m. Then, where Γ is a set of
expressions of our language for derivations, vm(Γ) = 1 iff for each As ∈ Γ ,
vm(s)(A) = 1, and for each s.t ∈ Γ , 〈m(s),m(t)〉 ∈ R. Now expand notions of
validity to include subscripted formulas, and alternate expressions as indicated
in double brackets.

VNα* Γ |=∗
Nα As [[s.t]] iff there is no Nα interpretation 〈W,N,R, v〉m such that

vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R]].

NNα* Γ `∗NNα As [[s.t]] iff there is an NNα derivation of As [[s.t]] from the
members of Γ .

These notions reduce to the standard ones when all the members of Γ and A

have subscript 0 (and so do not include expressions of the sort s.t). This is
obvious for NNα*. In the other case, there is a 〈W,N,R, v〉m and w ∈ N that
makes all the members of Γ0 true and A0 false just in case there is a world in N

that makes the unsubscripted members of Γ true andA false. For the following,
cases omitted are like ones worked, and so left to the reader.

 3.1 NNα is sound: If Γ ǸNα A then Γ |=Nα A.

L3.1 If Γ ⊆ Γ ′ and Γ |=∗
Nα Ps [[s.t]], then Γ ′ |=∗

Nα Ps [[s.t]].
Reasoning parallel to that for L2.1 of NKα.

Main result: For each line in a derivation let Pi be the expression on line i and
Γi be the set of all premises and assumptions whose scope includes line i. We
set out to show “generalized” soundness: if Γ `∗NNα P then Γ |=∗

Nα P. Suppose
Γ `∗NNα P. Then there is a derivation of P from premises in Γ where P appears
under the scope of the premises alone. By induction on line number of this
derivation, we show that for each line i of this derivation, Γi |=∗

Nα Pi. The case
when Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[s.t]]. Then Γ1 = {As} [[{s.t}]]; so
for any 〈W,N,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[〈m(s),m(t)〉 ∈ R]];
so there is no 〈W,N,R, v〉m such that vm(Γ1) = 1 but vm(s)(A) = 0

[[〈m(s),m(t)〉 6∈ R]]. So by VNα*, Γ1 |=∗
Nα As [[s.t]], where this is just to

say, Γ1 |=∗
Nα P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Nα Pi.

Show: Γk |=∗
Nα Pk.

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 75

Pk is either a premise, an assumption, or arises from previous lines by R,
⊃I,⊃E,∧I,∧E, ¬I, ¬E,∨I,∨E,≡I,≡E,2I,2E,3I,3E or, depending
on the system, AMη, AMρ, AMσ or AMτ. If Pk is a premise or an
assumption, then as in the basis, Γk |=∗

Nα Pk. So suppose Pk arises by
one of the rules.

(R)

(⊃I)

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s

j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗
Nα (A ⊃ B)s and

Γj |=∗
Nα As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L3.1,

Γk |=∗
Nα (A ⊃ B)s and Γk |=∗

Nα As. Suppose Γk 6|=∗
Nα Bs; then by VNα*,

there is someNα interpretation 〈W,N,R, v〉m such that vm(Γk) = 1 but
vm(s)(B) = 0; since vm(Γk) = 1, by VNα*, vm(s)(A ⊃ B) = 1 and
vm(s)(A) = 1; from the former, by TN(⊃), vm(s)(A) = 0 or vm(s)(B) =

1; so vm(s)(B) = 1. This is impossible; reject the assumption: Γk |=∗
Nα Bs,

which is to say, Γk |=∗
Nα Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt

j ¬Bt

k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗
Nα Bt and Γj |=∗

Nα ¬Bt;
but by the nature of access, Γi ⊆ Γk ∪ {As} and Γj ⊆ Γk ∪ {As}; so by
L3.1, Γk ∪ {As} |=∗

Nα Bt and Γk ∪ {As} |=∗
Nα ¬Bt. Suppose Γk 6|=∗

Nα ¬As;
then by VNα*, there is an Nα interpretation 〈W,N,R, v〉m such that
vm(Γk) = 1 but vm(s)(¬A) = 0; so by TN(¬), vm(s)(A) = 1; so vm(Γk) =

1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VNα*, vm(t)(B) = 1

and vm(t)(¬B) = 1; from the latter, by TN(¬), vm(t)(B) = 0. This is
impossible; reject the assumption: Γk |=∗

Nα ¬As, which is to say, Γk |=∗
Nα

Pk.

(¬E)
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(∨I)

(∨E)

(≡I)

(≡E)

(2I) If Pk arises by 2I, then the picture is like this,

s.t

i At

k 2As

where i < k, s is 0 or introduced in some accessible 2Ps or ¬3Ps, t

does not appear in any member of Γk (in any undischarged premise or
assumption), and Pk is 2As. By assumption, Γi |=∗

Nα At; but by the
nature of access, Γi ⊆ Γk ∪ {s.t}; so by L3.1, Γk ∪ {s.t} |=∗

Nα At. Suppose
Γk 6|=∗

Nα 2As; then by VNα*, there is anNα interpretation 〈W,N,R, v〉m
such that vm(Γk) = 1 but vm(s)(2A) = 0. If s is 0, then m(s) ∈ N; if
s is introduced in some 2Ps on accessible line j, then by assumption,
Γj |=∗

Nα 2Ps; but by the nature of access, Γj ⊆ Γk; so by L3.1, Γk |=∗
Nα 2Ps;

so by VNα*, vm(s)(2P) = 1; so by TN(2),m(s) ∈ N; if s is introduced
in some ¬3Ps on an accessible line j, then by assumption, Γj |=∗

Nα ¬3Ps;
but by the nature of access, Γj ⊆ Γk; so by L3.1, Γk |=∗

Nα ¬3Ps; so by
VNα*, vm(s)(¬3P) = 1; so by TN(¬), vm(s)(3P) = 0; so by TN(3),
m(s) ∈ N; in any case, then, m(s) ∈ N. So by TN(2), there is some
w ∈ W such that m(s)Rw and vw(A) = 0. Now consider a map m′

like m except that m′(t) = w, and consider 〈W,N,R, v〉m′ ; since t does
not appear in Γk, it remains that vm′(Γk) = 1; and since m′(t) = w and
m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t}) = 1; so by VNα*,
vm′(t)(A) = 1. But m′(t) = w; so vw(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Nα 2As, which is to say, Γk |=∗
Nα Pk.

(2E) If Pk arises by 2E, then the picture is like this,

i 2As

j s.t

k At

where i, j < k and Pk is At. By assumption, Γi |=∗
Nα 2As and Γj |=∗

Nα s.t;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L3.1, Γk |=∗

Nα 2As

and Γk |=∗
Nα s.t. Suppose Γk 6|=∗

Nα At; then by VNα*, there is some Nα

interpretation 〈W,N,R, v〉m such that vm(Γk) = 1 but vm(t)(A) = 0;
since vm(Γk) = 1, by VNα*, vm(s)(2A) = 1 and 〈m(s),m(t)〉 ∈ R; from
the first of these, by TN(2), any w such that m(s)Rw has vw(A) = 1;
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so vm(t)(A) = 1. This is impossible; reject the assumption: Γk |=∗
Nα At,

which is to say, Γk |=∗
Nα Pk.

(3I)

(3E) If Pk arises by 3E, then the picture is like this,

i 3As

At

s.t

j Bu

k Bu

where i, j < k, s is 0 or introduced in some accessible 2Ps or ¬3Ps, t
does not appear in any member of Γk (in any undischarged premise or
assumption) and is not u, and Pk is Bu. By assumption, Γi |=∗

Nα 3As and
Γj |=∗

Nα Bu; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {At, s.t};
so by L3.1, Γk |=∗

Nα 3As and Γk ∪ {At, s.t} |=∗
Nα Bu. Suppose Γk 6|=∗

Nα Bu;
then by VNα*, there is an Nα interpretation 〈W,N,R, v〉m such that
vm(Γk) = 1 but vm(u)(B) = 0. If s is 0, thenm(s) ∈ N; if s is introduced
in some 2Ps on accessible line h, then by assumption, Γh |=∗

Nα 2Ps;
but by the nature of access, Γh ⊆ Γk; so by L3.1, Γk |=∗

Nα 2Ps; so by
VNα*, vm(s)(2P) = 1; so by TN(2), m(s) ∈ N; if s is introduced in
some ¬3Ps on an accessible line h, then by assumption, Γh |=∗

Nα ¬3Ps;
but by the nature of access, Γh ⊆ Γk; so by L3.1, Γk |=∗

Nα ¬3Ps; so by
VNα*, vm(s)(¬3P) = 1; so by TN(¬), vm(s)(3P) = 0; so by TN(3),
m(s) ∈ N; in any case, then, m(s) ∈ N. Since vm(Γk) = 1, by VNα*,
vm(s)(3A) = 1; so by TN(3), since m(s) ∈ N, there is some w ∈ W

such thatm(s)Rw and vw(A) = 1. Now consider a mapm′ likem except
that m′(t) = w, and consider 〈W,N,R, v〉m′ ; since t does not appear in
Γk, it remains that vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w,
vm′(t)(A) = 1 and 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {At, s.t}) = 1; so by
VNα*, vm′(u)(B) = 1. But since t 6= u,m′(u) = m(u); so vm(u)(B) = 1.
This is impossible; reject the assumption: Γk |=∗

Nα Bu, which is to say,
Γk |=∗

Nα Pk.

(AMη) If Pk arises by AMη, then the picture is like this,

s.t

i Au

k Au

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption) and is not u, and Pk is Au. Where this rule is
included in NNα, Nα includes condition η. By assumption, Γi |=∗

Nα Au;
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but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by L3.1, Γk ∪ {s.t} |=∗
Nα

Au. Suppose Γk 6|=∗
Nα Au; then by VNα*, there is an Nα interpretation

〈W,N,R, v〉m such that vm(Γk) = 1 but vm(u)(A) = 0. By condition η,
there is a w ∈ W such that m(s)Rw; consider a map m′ like m except
that m′(t) = w, and consider 〈W,N,R, v〉m′ ; since t does not appear in
Γk, it remains that vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w,
〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t}) = 1; so by VNα*, vm′(u)(A) = 1.
But since t 6= u, m′(u) = m(u); so vm(u)(A) = 1. This is impossible;
reject the assumption: Γk |=∗

Nα Au, which is to say, Γk |=∗
Nα Pk.

(AMρ)

(AMσ)

(AMτ) If Pk arises by AMτ, then the picture is like this,

i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. Where this rule is in NNα, Nα in-
cludes condition τ. By assumption, Γi |=∗

Nα s.t and Γj |=∗
Nα t.u; but by

the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L3.1, Γk |=∗
Nα s.t and

Γk |=∗
Nα t.u. Suppose Γk 6|=∗

Nα s.u; then by VNα*, there is some Nα in-
terpretation 〈W,N,R, v〉m such that vm(Γk) = 1 but 〈m(s),m(u)〉 6∈ R;
since vm(Γk) = 1, by VNα*, 〈m(s),m(t)〉 ∈ R and 〈m(t),m(u)〉 ∈ R; and
by condition τ, for any 〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 ∈ R; so 〈m(s),m(u)〉 ∈ R.
This is impossible; reject the assumption: Γk |=∗

Nα s.u, which is to say,
Γk |=∗

Nα Pk.
———
For any i, Γi |=∗

Nα Pi.

 3.2 NNα is complete: if Γ |=Nα A then Γ ǸNα A.

Suppose Γ |=Nα A; then Γ0 |=∗
Nα A0; we show that Γ0 `∗NNα A0. Again, this reduces

to the standard notion. For the following, fix on some particular constraint(s)
α. Then definitions of consistency etc. are relative to it.

C Γ is  iff there is no As such that Γ `∗NNα As and Γ `∗NNα ¬As.

L3.2 If s is 0 or appears in Γ , and Γ 6`∗NNα ¬Ps, then Γ ∪ {Ps} is consistent.
Suppose s is 0 or appears in Γ and Γ 6`∗NNα ¬Ps but Γ ∪ {Ps} is inconsistent.
Then there is some At such that Γ ∪ {Ps} `∗NNα At and Γ ∪ {Ps} `∗NNα ¬At.
But then we can argue,
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1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}

4 ¬At from Γ ∪ {Ps}

5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in Γ ;
so Γ `∗NNα ¬Ps. But this is impossible; reject the assumption: if s is 0 or
introduced in Γ and Γ 6`∗NNα ¬Ps, then Γ ∪ {Ps} is consistent.

L3.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 of NKα.

M Γ is  - iff for any As either Γ `∗NNα As or Γ `∗NNα ¬As.

S Γ is a  set iff for every formula of the form (2P ∧ ¬2A)s,
if Γ `∗NNα (2P ∧ ¬2A)s then there is some t such that Γ `∗NNα s.t and
Γ `∗NNα ¬At.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L3.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included inΩi−1, let Ei

be like Ei−1 but without As, and set,
Ωi = Ωi−1 if Ωi−1 `∗NNα ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NNα ¬As

and
Ωi = Ωi∗ if As is not of the form (2Q ∧ ¬2Ps)

Ωi = Ωi∗ ∪ {s.t,¬Pt} if As is of the form (2Q ∧ ¬2P)s

-where t is the first subscript not included in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L3.4 For any s included in Γ ′, Γ ′ is s-maximal.
Suppose s is included in Γ ′ but Γ ′ is not s-maximal. Then there is some
As such that Γ ′ 6`∗NNα As and Γ ′ 6`∗NNα ¬As. For any i, each member of
Ωi−1 is in Γ ′; so if Ωi−1 `∗NNα ¬As then Γ ′ `∗NNα ¬As; but Γ ′ 6`∗NNα ¬As;
so Ωi−1 6`∗NNα ¬As; so since s is included in Γ ′, there is a stage in the
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construction that sets Ωi∗ = Ωi−1 ∪ {As}; so by construction, As ∈ Γ ′;
so Γ ′ `∗NNα As. This is impossible; reject the assumption: Γ ′ is s-maximal.

L3.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {As} or (iii) Ωk∗ ∪
{s.t,¬Pt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is

0 or in Ωk−1 and Ωk−1 6`∗NNα ¬As; so by L3.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t,¬Pt}. In this case, as above, Ωk∗ is
consistent and by construction, (2Q ∧ ¬2P)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ¬Au such thatΩk∗ ∪
{s.t,¬Pt} `∗NNα Au and Ωk∗ ∪ {s.t,¬Pt} `∗NNα ¬Au. So reason as
follows,

1 Ωk∗

2 (2Q ∧ ¬2P)s from Ωk∗

3 2Qs 2 ∧E
4 s.t A (g, 2I)

5 ¬Pt A (c, ¬E)

6 Au from Ωk∗ ∪ {s.t,¬Pt}

7 ¬Au from Ωk∗ ∪ {s.t,¬Pt}

8 Pt 5-7 ¬E
9 2Ps 3,4-8 2I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NNα 2Ps; but
(2Q ∧ ¬2P)s ∈ Ωk∗ ; so with (∧E), Ωk∗ `∗NNα ¬2Ps; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.

L3.6 If Γ0 is consistent, then Γ ′ is consistent.
Suppose Γ0 is consistent, but Γ ′ is not; from the latter, there is some
Ps such that Γ ′ `∗NNα Ps and Γ ′ `∗NNα ¬Ps. Consider derivations D1 and
D2 of these results, and the premises Pi . . .Pj of these derivations. By
construction, there is an Ωk with each of these premises as a member;

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 81

so D1 and D2 are derivations from Ωk; so Ωk is not consistent. But
since Γ0 is consistent, by L3.5, Ωk is consistent. This is impossible;
reject the assumption: if Γ0 is consistent then Γ ′ is consistent.

L3.7 If Γ0 is consistent, then Γ ′ is a scapegoat set.
Suppose Γ0 is consistent and Γ ′ `∗NNα (2Q∧¬2P)s. By L3.6, Γ ′ is consist-
ent; and by the constraints on subscripts, s is included in Γ ′. Since Γ ′ is
consistent, Γ ′ 6`∗NNα ¬(2Q∧¬2P)s; so there is a stage in the construction
process where Ωi∗ = Ωi−1 ∪ {(2Q ∧ ¬2P)s} and Ωi = Ωi∗ ∪ {s.t,¬Pt};
so by construction, s.t ∈ Γ ′ and ¬Pt ∈ Γ ′; so Γ ′ `∗NNα s.t and Γ ′ `∗NNα ¬Pt.
So Γ ′ is a scapegoat set.

C(I) We construct an interpretation I = 〈W,N,R, v〉 based on Γ ′ as follows.
Let W have a member ws corresponding to each subscript s included
in Γ ′. Then set ws ∈ N iff there is some Q such that Γ ′ `∗NNα 2Qs; set
R = {〈ws, ws〉 | ws ∈ (W − N)} ∪ {〈ws, wt〉 | Γ ′ `∗NNα s.t}; and vws(p) = 1

iff Γ ′ `∗NNα ps.
Note that w0 ∈ N. By a simple derivation, `∗NNα 2>0; so Γ ′ `∗NNα 2>0;
so w0 ∈ N.

L3.8 If Γ0 is consistent then for 〈W,N,R, v〉 constructed as above, and for any
s included in Γ ′, vws(A) = 1 iff Γ ′ `∗NNα As.
Suppose Γ0 is consistent and s is included in Γ ′. By L3.4, Γ ′ is s-maximal.
By L3.6 and L3.7, Γ ′ is consistent and a scapegoat set. Now by induction
on the number of operators in As,

Basis: IfAs has no operators, then it is a parameter ps and by construc-
tion, vws(p) = 1 iff Γ ′ `∗NNα ps. So vws(A) = 1 iff Γ ′ `∗NNα As.

Assp: For any i, 0 6 i < k, if As has i operators, then vws(A) = 1 iff
Γ ′ `∗NNα As.

Show: If As has k operators, then vws(A) = 1 iff Γ ′ `∗NNα As.
If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧ Q)s, (P ∨ Q)s, (P ≡ Q)s, 2Ps or 3Ps where P and Q have
< k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P) = 1; so by
TN(¬), vws(P) = 0; so by assumption, Γ ′ 6`∗NNα Ps; so by s-
maximality, Γ ′ `∗NNα ¬Ps, where this is to say, Γ ′ `∗NNα As. (ii) Sup-
pose Γ ′ `∗NNα As; then Γ ′ `∗NNα ¬Ps; so by consistency, Γ ′ 6`∗NNα Ps;
so by assumption, vws(P) = 0; so by TN(¬), vws(¬P) = 1, where
this is to say, vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NNα As.

(⊃) As is (P ⊃ Q)s. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NNα As; then
vws(P ⊃ Q) = 1 but Γ ′ 6`∗NNα (P ⊃ Q)s. From the latter, by s-
maximality, Γ ′ `∗NNα ¬(P ⊃ Q)s; from this it follows, by simple
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derivations, that Γ ′ `∗NNα Ps and Γ ′ `∗NNα ¬Qs; so by consistency,
Γ ′ 6`∗NNα Qs; so by assumption, vws(P) = 1 and vws(Q) = 0; so by
TN(⊃), vws(P ⊃ Q) = 0. This is impossible; reject the assump-
tion: if vws(A) = 1 then Γ ′ `∗NNα As.
(ii) Suppose Γ ′ `∗NNα As but vws(A) = 0; then Γ ′ `∗NNα (P ⊃ Q)s

but vws(P ⊃ Q) = 0. From the latter, by TN(⊃), vws(P) = 1

and vws(Q) = 0; so by assumption, Γ ′ `∗NNα Ps and Γ ′ 6`∗NNα Qs;
but since Γ ′ `∗NNα (P ⊃ Q)s and Γ ′ `∗NNα Ps, by (⊃E), Γ ′ `∗NNα Qs.
This is impossible; reject the assumption: if Γ ′ `∗NNα As, then
vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NNα As.

(∧)
(∨)
(≡)
(2) As is2Ps. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NNα As; then vws(2P) =

1 but Γ ′ 6`∗NNα 2Ps. From the former, by TN(2), ws ∈ N; so
by construction, there is some Q such that Γ ′ `∗NNα 2Qs; from
the latter, by s-maximality, Γ ′ `∗NNα ¬2Ps; so by (∧I), Γ ′ `∗NNα

(2Q ∧ ¬2P)s; so, since Γ ′ is a scapegoat set, there is some t

such that Γ ′ `∗NNα s.t and Γ ′ `∗NNα ¬Pt; from the first, by con-
struction, 〈ws, wt〉 ∈ R; and from the second, by consistency,
Γ ′ 6`∗NNα Pt; so by assumption, vwt(P) = 0; but wsRwt; so by
TN(2), vws(2P) = 0. This is impossible; reject the assumption:
if vws(A) = 1, then Γ ′ `∗NNα As.
(ii) Suppose Γ ′ `∗NNα As but vws(A) = 0; then Γ ′ `∗NNα 2Ps but
vws(2P) = 0. From the former, by construction,ws ∈ N; so with
the latter, by TN(2), there is some wt ∈ W such that wsRwt

and vwt(P) = 0; so by assumption, Γ ′ 6`∗NNα Pt; but since wsRwt

and ws ∈ N, by construction, Γ ′ `∗NNα s.t; so by (2E), Γ ′ `∗NNα Pt.
This is impossible; reject the assumption: if Γ ′ ǸNα As then
vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NNα As.

(3) As is3Ps. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NNα As; then vws(3P) =

1 but Γ ′ 6`∗NNα 3Ps; from the latter, by s-maximality, Γ ′ `∗NNα ¬3Ps;
so by (MN), Γ ′ `∗NNα 2¬Ps; so by construction, ws ∈ N; so, with
the former, by TN(3), there is some wt ∈ W such that wsRwt

and vwt(P) = 1; so by assumption, Γ ′ `∗NNα Pt; but since wsRwt

andws ∈ N, by construction, Γ ′ `∗NNα s.t; so by (3I), Γ ′ `∗NNα 3Ps.
This is impossible; reject the assumption: if vws(A) = 1 then
Γ ′ `∗NNα As.
(ii) Suppose Γ ′ `∗NNα As but vws(A) = 0; then Γ ′ `∗NNα 3Ps but
vws(3P) = 0. From the latter, by TN(3), ws ∈ N; so by con-
struction, there is some Q such that Γ ′ `∗NNα 2Qs; from the
former, by (MN), Γ ′ `∗NNα ¬2¬Ps; so by (∧I), Γ ′ `∗NNα (2Q ∧
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¬2¬P)s; so, since Γ ′ is a scapegoat set, there is some t such that
Γ ′ `∗NNα s.t and Γ ′ `∗NNα ¬¬Pt; from the first, by construction,
〈ws, wt〉 ∈ R; from the second, by (DN), Γ ′ `∗NNα Pt; so by as-
sumption, vwt(P) = 1; so since wsRwt by TN(3), vws(3P) = 1.
This is impossible; reject the assumption: if vws(A) = 1 then
Γ ′ `∗NNα As. So vws(A) = 1 iff Γ ′ `∗NNα As.

———
For any As, vws(A) = 1 iff Γ ′ `∗NNα As.

L3.9 If Γ0 is consistent, then 〈W,N,R, v〉 constructed as above is an Nα in-
terpretation.
In each case, we need to show that the interpretation meets the condi-
tion(s) α. Suppose Γ0 is consistent.

(η) Suppose α includes condition η and ws ∈ W. If ws 6∈ N, then by
construction, 〈ws, ws〉 ∈ R and η is satisfied. So suppose ws ∈
N. Then by construction, there is someQ such that Γ ′ `∗NNα 2Qs;
so by reasoning as follows,
1 Γ ′

2 2Qs from Γ ′

3 s.t A (g, AMη)

4 >t > is a tautology
5 3>s 3,4 3I
6 3>s 3-5 AMη

7 ¬2¬>s 6 MN
8 (2Q ∧ ¬2¬>)s 2,7 ∧I

Γ ′ `∗NNα (2Q ∧ ¬2¬>)s; but by L3.7, Γ ′ is a scapegoat set; so
there is a t such that Γ ′ `∗NNα s.t; so by construction, 〈ws, wt〉 ∈ R

and η is satisfied.
(ρ) Suppose α includes condition ρ and ws ∈ W. Then by con-

struction, s is a subscript in Γ ′; so by (AMρ), Γ ′ `∗NNα s.s; so by
construction, 〈ws, ws〉 ∈ R and ρ is satisfied.

(σ) Suppose α includes condition σ and 〈ws, wt〉 ∈ R. If ws = wt

then σ is satisfied automatically. So suppose ws 6= wt; then by
construction, Γ ′ `∗NNα s.t; so by (AMσ), Γ ′ `∗NNα t.s; so by con-
struction, 〈wt, ws〉 ∈ R and σ is satisfied.

(τ) Suppose α includes condition τ and 〈ws, wt〉, 〈wt, wu〉 ∈ R. If
ws = wt or wt = wu, then τ is satisfied automatically. So sup-
pose ws 6= wt and wt 6= wu; then by construction, Γ ′ `∗NNα s.t

and Γ ′ `∗NNα t.u; so by (AMτ), Γ ′ `∗NNα s.u; so by construction,
〈ws, wu〉 ∈ R and τ is satisfied.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.
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L3.10 If Γ0 is consistent, then vm(Γ0) = 1.
Suppose Γ0 is consistent and A0 ∈ Γ0; then by construction, A0 ∈ Γ ′; so
Γ ′ `∗NNα A0; so since Γ0 is consistent, by L3.8, vw0

(A) = 1. And similarly
for any A0 ∈ Γ0. Butm(0) = w0; so vm(Γ0) = 1.

Main result: Suppose Γ |=Nα A but Γ 6 ǸNα A. Then Γ0 |=∗
Nα A0 but Γ0 6`∗NNα A0. By

(DN), if Γ0 `∗NNα ¬¬A0, then Γ0 `∗NNα A0; so Γ0 6`∗NNα ¬¬A0; so by L3.2, Γ0∪{¬A0}

is consistent; so by L3.9 and L3.10, there is anNα interpretation 〈W,N,R, v〉m
constructed as above such that vm(Γ0 ∪ {¬A0}) = 1; so vm(0)(¬A) = 1; so
by TN(¬), vm(0)(A) = 0; so vm(Γ0) = 1 and vm(0)(A) = 0; so by VNα*,
Γ0 6|=∗

Nα A0. This is impossible; reject the assumption: if Γ |=Nα A, then Γ ǸNα A.

4  : Cx (. 5)
4.1  /  
LC The  consists of propositional parameters p0, p1 . . . with

the operators, ¬, ∧, ∨, ⊃, ≡, 2,3 and >. Each propositional parameter
is a ; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
(A ⊃ B), (A ≡ B), 2A, 3A and (A > B).

IC Where = is the set of all formulas in the language, an 
is 〈W, {RA | A ∈ =}, v〉 whereW is a set of worlds, and v assigns 0 or 1 to
parameters at worlds. The middle term is a set of access relations: for
any formula A, there is an access relation RA which says which worlds
are A-accessible from any w. Say fA(w) = {x ∈ W | wRAx}, and [A] =

{w | vw(A) = 1}. Then, where x is empty or indicates some combination
of the following constraints,

(1) fA(w) ⊆ [A]

(2) If w ∈ [A], then w ∈ fA(w)

(3) If [A] 6= φ, then fA(w) 6= φ

(4) If fA(w) ⊆ [B] and fB(w) ⊆ [A], then fA(w) = fB(w)

(5) If fA(w) ∩ [B] 6= φ, then fA∧B(w) ⊆ fA(w)

(6) If x ∈ fA(w) and y ∈ fA(w), then x = y

(7) If x ∈ [A], and y ∈ fA(x), then x = y

〈W, {RA | A ∈ =}, v〉 is a Cx interpretation when it meets the constraints
from x. System C has none of the extra constraints; C+ is C with con-
straints (1) - (2); CS is C with constraints (1) - (5); C1 is C with constraints
(1) - (5) and (7); C2 is C with constraints (1) - (5) and (6).

TC For complex expressions,

(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.
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(∧) vw(A ∧ B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.
(∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.
(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.

(3)υ vw(3A) = 1 if some x ∈ W has vx(A) = 1, and 0 otherwise.
(2)υ vw(2A) = 1 if all x ∈ W have vx(A) = 1, and 0 otherwise.
(>) vw(A > B) = 1 iff all x ∈ W such that wRAx have vx(B) = 1.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ ; then,

VC Γ |=Cx A iff there is no Cx interpretation 〈W, {RA | A ∈ =}, v〉 and w ∈ W

such that vw(Γ) = 1 and vw(A) = 0.

4.2  : NCx
Derivation systems NCx take over ¬, ⊃, ∧, ∨, ≡, 2 and 3 rules from NKυ.
Thus modal rules are,

2Iυ >t

Pt

2Ps

where t does not appear in any undischarged premise or
assumption

3Eυ 3Ps

Pt

Qu

Qu

where t does not appear in any undischarged premise or
assumption and is not u

2Eυ 2Ps

Pt

3Iυ Pt

3Ps

For >, let there be new subscripted expressions of the sortAs/t – which intuit-
ively say wsRAwt. Expressions of this sort do not interact with other formulas
except as follows (and so do not interact with rules of NKυ):

>I Ps/t

Qt

(P > Q)s

where t does not appear in any undischarged premise or
assumption

6>E ¬(P > Q)s

Ps/t

¬Qt

Ru

Ru

where t does not appear in any undischarged premise or
assumption and is not u

>E (P > Q)s

Ps/t

Qt

6>I Ps/t

¬Qt

¬(P > Q)s
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Corresponding to constraints (1) - (7) are AMP1, AMP2, AMS1, AMS2, AMS3,
AMRS, and two forms of AMDL. For AMRS A(t) is an expression of the sort
Qt, Qt/v, Qv/t or Qt/t with a subscript t, and A(u) is like A(t) except that
some instance(s) of t are replaced by u. And similarly for AMDL.

AMP1 Ps/t

Pt

AMP2 Pt

Pt/t

AMS1 3Ps

Ps/t

Qu

Qu

where t does not appear in any
undischarged premise or assump-
tion and is not u

AMS2 (P > Q)s

(Q > P)s

Ps/t

Qs/t

AMS3 ¬(P > ¬Q)s

(P ∧ Q)s/t

Ps/t

AMRS Ps/t

Ps/u

A(t)

A(u)

AMDL Ps Ps

Ps/t Ps/t

A(t) A(s)

A(s) A(t)

In these systems, every subscript is 0, appears in a premise, or appears in the
t-place of an assumption for 2Iυ, 3Eυ, >I, 6>E or AMS1. Intuitively there are
plus rules, rules for the sphere conception, and rules for the Stalnaker and Lewis
alternatives. NC includes just the rules of NKυ plus >I, >E, 6>I and 6>E (but,
as below, the latter two are derived). Then,

NC+ has the rules of NC plus AMP1, AMP2

NCS has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3

NC1 has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3, AMDL

NC2 has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3, AMRS

Where Γ is a set of unsubscripted formulas, let Γ0 be those same formulas each
with subscript 0. Then,

NC Γ ǸCx A iff there is an NCx derivation of A0 from Γ0.

Derived rules carry over from NKα. In addition, as first examples, 6>I and
6>E are derived rules in NC, and so in any NCx.
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6>I

1 Ps/t P
2 ¬Qt P

3 (P > Q)s A (c, ¬I)

4 Qt 1,3 >E
5 ¬Qt 2 R
6 ¬(P > Q)s 3-5 ¬I

6>E

1 ¬(P > Q)s P

2 ¬Ru A (c, ¬E)

3 Ps/t A (g, >I)

4 ¬Qt A (c, ¬E)

... from 1,3,4
5 Ru as for 6>E
6 ¬Ru 2 R
7 Qt 4-6 ¬E
8 (P > Q)s 3-7 >I
9 ¬(P > Q)s 1 R
10 Ru 2-9 ¬E

As final examples, here is a case in NCS using AMS3 and then again in NC2 but
without appeal to AMS3 (so that AMS3 is not necessary in NC2 for the result).
This last case is a bit messy, but should nicely illustrate use of the rules.

A > B,¬(A > ¬C) ǸCS (A ∧ C) > B

1 (A > B)0 P
2 ¬(A > ¬C)0 P

3 (A ∧ C)0/1 A (g, >I)

4 A0/1 2,3 AMS3

5 B1 1,4 >E
6 [(A ∧ C) > B]0 3-5 >I

A > B,¬(A > ¬C) ǸC2 (A ∧ C) > B

1 (A > B)0 P
2 ¬(A > ¬C)0 P

3 A0/1 A (g, 2 6>E)
4 ¬¬C1

5 (A ∧ C)0/2 A (g, >I)

6 (A ∧ C)0/3 A (g, >I)

7 (A ∧ C)3 6 AMP1

8 A3 7 ∧E
9 [(A ∧ C) > A]0 6-8 >I
10 A0/3 A (g, >I)

11 A3 10 AMP1

12 ¬¬C3 3,10,4 AMRS

13 C3 12 DN
14 (A ∧ C)3 11,13 ∧I
15 [A > (A ∧ C)]0 10-14 >I
16 A0/2 9,15,5 AMS2

17 B2 1,16 >E
18 [(A ∧ C) > B]0 5-17 >I
19 [(A ∧ C) > B]0 2,3-18 6>E

The derivation on the left is a simple application of AMS3. On the right, we go
for the final goal by 6>E.4 The real work is getting A0/2 so that we can use >E
with (1). And we go for this by getting the conditionals that feed into AMS2,
given that we already have (A ∧ C)0/2.

4As, given strategies from [12, chapter 6], we would jump on ∨E, ∃E or 3E when available.
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4.3   
Preliminaries: Begin with generalized notions of validity. For a model 〈W, {RA |

A ∈ =}, v〉, let m be a map from subscripts into W. Say 〈W, {RA | A ∈ =}, v〉m
is 〈W, {RA | A ∈ =}, v〉 with map m. Then, where Γ is a set of expressions of
our language for derivations, vm(Γ) = 1 iff for each As ∈ Γ , vm(s)(A) = 1,
and for each As/t ∈ Γ , m(t) ∈ fA(m(s)). Now expand notions of validity to
include subscripted formulas, and alternate expressions as indicated in double
brackets.

VC* Γ |=∗
Cx As [[As/t]] iff there is no Cx interpretation 〈W, {RA | A ∈ =}, v〉m

such that vm(Γ) = 1 but vm(s)(A) = 0 [[m(t) 6∈ fA(m(s))]].

NC* Γ `∗NCx As [[As/t]] iff there is an NCx derivation of As [[As/t]] from the
members of Γ .

These notions reduce to the standard ones when all the members of Γ and A

have subscript 0 (and so do not include expressions of the sort As/t). This
is obvious for NC*. In the other case, there is a 〈W, {RA | A ∈ =}, v〉m and
w ∈ W that makes all the members of Γ0 true and A0 false just in case there is
a world inW that makes the unsubscripted members of Γ true and A false. For
the following, cases omitted are like ones worked, and so left to the reader.

 4.1 NCx is sound: If Γ ǸCx A then Γ |=Cx A.

L4.1 If Γ ⊆ Γ ′ and Γ |=∗
Cx Ps [[Ps/t]], then Γ ′ |=∗

Cx Ps [[Ps/t]].
Reasoning parallel to that for L2.1 of NKα.

Main result: For each line in a derivation let Pi be the expression on line i and
Γi be the set of all premises and assumptions whose scope includes line i. We
set out to show “generalized” soundness: if Γ `∗NCx P then Γ |=∗

Cx P. Suppose
Γ `∗NCx P. Then there is a derivation of P from premises in Γ where P appears
under the scope of the premises alone. By induction on line number of this
derivation, we show that for each line i of this derivation, Γi |=∗

Cx Pi. The case
when Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[As/t]]. Then Γ1 = {As} [[{As/t}]];
so for any 〈W, {RA | A ∈ =}, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[m(t) ∈
fA(m(s))]]; so there is no 〈W, {RA | A ∈ =}, v〉m such that vm(Γ1) = 1 but
vm(s)(A) = 0 [[m(t) 6∈ fA(m(s))]]. So by VC*, Γ1 |=∗

Cx As [[As/t]], where
this is just to say, Γ1 |=∗

Cx P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Cx Pi.

Show: Γk |=∗
Cx Pk.
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Pk is either a premise, an assumption, or arises from previous lines by
R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I, ≡E, 2Iυ, 2Eυ, 3Iυ, 3Eυ,
>I, >E or, depending on the system, AMP1, AMP2, AMS1, AMS2, AMS3,
AMRS or AMDL. If Pk is a premise or an assumption, then as in the
basis, Γk |=∗

Cx Pk. So suppose Pk arises by one of the rules.

(R)

(⊃I)

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s

j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗
Cx (A ⊃ B)s and

Γj |=∗
Cx As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1,

Γk |=∗
Cx (A ⊃ B)s and Γk |=∗

Cx As. Suppose Γk 6|=∗
Cx Bs; then by VC*, there

is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1

but vm(s)(B) = 0; since vm(Γk) = 1, by VC*, vm(s)(A ⊃ B) = 1 and
vm(s)(A) = 1; from the former, by TC(⊃), vm(s)(A) = 0 or vm(s)(B) =

1; so vm(s)(B) = 1. This is impossible; reject the assumption: Γk |=∗
Cx Bs,

which is to say, Γk |=∗
Cx Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt

j ¬Bt

k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗
Cx Bt and Γj |=∗

Cx ¬Bt;
but by the nature of access, Γi ⊆ Γk ∪ {As} and Γj ⊆ Γk ∪ {As}; so by
L4.1, Γk ∪ {As} |=∗

Cx Bt and Γk ∪ {As} |=∗
Cx ¬Bt. Suppose Γk 6|=∗

Cx ¬As;
then by VC*, there is a Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but vm(s)(¬A) = 0; so by TC(¬), vm(s)(A) = 1; so
vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VC*,
vm(t)(B) = 1 and vm(t)(¬B) = 1; from the latter, by TC(¬), vm(t)(B) =

0. This is impossible; reject the assumption: Γk |=∗
Cx ¬As, which is to

say, Γk |=∗
Cx Pk.

(¬E)
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(∨I)

(∨E)

(≡I)

(≡E)

(2Iυ) If Pk arises by 2Iυ, then the picture is like this,

>t

i At

k 2As

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is 2As. By assumption, Γi |=∗

Cx At;
but by the nature of access, Γi ⊆ Γk ∪ {>t}; so by L4.1, Γk ∪ {>t} |=∗

Cx

At. Suppose Γk 6|=∗
Cx 2As; then by VC*, there is a Cx interpretation

〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1 but vm(s)(2A) = 0; so by
TC(2)υ, there is some w ∈ W such that vw(A) = 0. Now consider
a map m′ like m except that m′(t) = w, and consider 〈W, {RA | A ∈
=}, v〉m′ ; since t does not appear in Γk, it remains that vm′(Γk) = 1;
and, at any world, vm′(t)(>) = 1; so vm′(Γk ∪ {>t}) = 1; so by VC*,
vm′(t)(A) = 1. But m′(t) = w; so vw(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Cx 2As, which is to say, Γk |=∗
Cx Pk.

(2Eυ) If Pk arises by 2Eυ, then the picture is like this,

i 2As

k At

where i < k and Pk is At. By assumption, Γi |=∗
Cx 2As; but by the

nature of access, Γi ⊆ Γk; so by L4.1, Γk |=∗
Cx 2As. Suppose Γk 6|=∗

Cx At;
then by VC*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m
such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VC*,
vm(s)(2A) = 1; so by TC(2)υ, any w has vw(A) = 1; so vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

Cx At, which is to say,
Γk |=∗

Cx Pk.

(3Iυ)

(3Eυ) If Pk arises by 3Eυ, then the picture is like this,

i 3As

At

j Bu

k Bu
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where i, j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Bu. By assump-
tion, Γi |=∗

Cx 3As and Γj |=∗
Cx Bu; but by the nature of access, Γi ⊆ Γk and

Γj ⊆ Γk ∪ {At}; so by L4.1, Γk |=∗
Cx 3As and Γk ∪ {At} |=∗

Cx Bu. Suppose
Γk 6|=∗

Cx Bu; then by VC*, there is a Cx interpretation 〈W, {RA | A ∈
=}, v〉m such that vm(Γk) = 1 but vm(u)(B) = 0. Since vm(Γk) = 1, by
VC*, vm(s)(3A) = 1; so by TC(3)υ, there is some w ∈ W such that
vw(A) = 1. Now consider a map m′ like m except that m′(t) = w,
and consider 〈W, {RA | A ∈ =}, v〉m′ ; since t does not appear in Γk, it
remains that vm′(Γk) = 1; and since m′(t) = w, vm′(t)(A) = 1; so
vm′(Γk ∪ {At}) = 1; so by VC*, vm′(u)(B) = 1. But since t 6= u,
m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the assump-
tion: Γk |=∗

Cx Bu, which is to say, Γk |=∗
Cx Pk.

(>I) If Pk arises by >I, then the picture is like this,

As/t

i Bt

k (A > B)s

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is (A > B)s. By assumption,
Γi |=∗

Cx Bt; but by the nature of access, Γi ⊆ Γk ∪ {As/t}; so by L4.1,
Γk ∪ {As/t} |=∗

Cx Bt. Suppose Γk 6|=∗
Cx (A > B)s; then by VC*, there is

a Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1 but
vm(s)(A > B) = 0; so by TC(>), there is some w ∈ W such that
m(s)RAw but vw(B) = 0. Now consider a map m′ like m except that
m′(t) = w, and consider 〈W, {RA |A ∈ =}, v〉m′ ; since t does not appear in
Γk, it remains that vm′(Γk) = 1; and since m′(t) = w and m′(s) = m(s),
〈m′(s),m′(t)〉 ∈ RA; so vm′(Γk∪ {As/t}) = 1; so by VC*, vm′(t)(B) = 1.
Butm′(t) = w; so vw(B) = 1. This is impossible; reject the assumption:
Γk |=∗

Cx (A > B)s, which is to say, Γk |=∗
Cx Pk.

(>E) If Pk arises by >E, then the picture is like this,

i (A > B)s

j As/t

k Bt

where i, j < k and Pk is Bt. By assumption, Γi |=∗
Cx (A > B)s and Γj |=∗

Cx

As/t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1, Γk |=∗
Cx

(A > B)s and Γk |=∗
Cx As/t. Suppose Γk 6|=∗

Cx Bt; then by VC*, there
is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1

but vm(t)(B) = 0; since vm(Γk) = 1, by VC*, vm(s)(A > B) = 1 and
〈m(s),m(t)〉 ∈ RA; from the former, by TC(>), any w ∈ W such that
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m(s)RAw has vw(B) = 1; so vm(t)(B) = 1. This is impossible; reject the
assumption: Γk |=∗

Cx Bt, which is to say, Γk |=∗
Cx Pk.

(AMP1) If Pk arises by AMP1, then the picture is like this,

i As/t

k At

where i < k and Pk is At. Where this rule is in NCx, Cx includes
condition (1). By assumption, Γi |=∗

Cx As/t; but by the nature of access,
Γi ⊆ Γk; so by L4.1, Γk |=∗

Cx As/t. Suppose Γk 6|=∗
Cx At; then by VC*,

there is some Cx interpretation 〈W, {RA |A ∈ =}, v〉m such that vm(Γk) =

1 but vm(t)(A) = 0; since vm(Γk) = 1, by VC*, m(t) ∈ fA(m(s)); so
by condition (1), m(t) ∈ [A]; so vm(t)(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Cx At, which is to say, Γk |=∗
Cx Pk.

(AMP2) If Pk arises by AMP2, then the picture is like this,

i At

k At/t

where i < k and Pk is At/t. Where this rule is in NCx, Cx includes
condition (2). By assumption, Γi |=∗

Cx At; but by the nature of access,
Γi ⊆ Γk; so by L4.1, Γk |=∗

Cx At. Suppose Γk 6|=∗
Cx At/t; then by VC*,

there is some Cx interpretation 〈W, {RA |A ∈ =}, v〉m such that vm(Γk) =

1 but m(t) 6∈ fA(m(t)); since vm(Γk) = 1, by VC*, vm(t)(A) = 1; so
m(t) ∈ [A]; so by condition (2), m(t) ∈ fA(m(t)). This is impossible;
reject the assumption: Γk |=∗

Cx At/t, which is to say, Γk |=∗
Cx Pk.

(AMS1) If Pk arises by AMS1, then the picture is like this,

i 3As

As/t

j Bu

k Bu

where i, j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Bu. Where this
rule is in NCx, Cx includes condition (3). By assumption, Γi |=∗

Cx 3As

and Γj |=∗
Cx Bu; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {As/t};

so by L4.1, Γk |=∗
Cx 3As and Γk ∪ {As/t} |=∗

Cx Bu. Suppose Γk 6|=∗
Cx Bu;

then by VC*, there is a Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but vm(u)(B) = 0. Since vm(Γk) = 1, by VC*,
vm(s)(3A) = 1; so by TC(3)υ, there is somew ∈ W such that vw(A) =

1; so w ∈ [A] and [A] 6= φ; so by condition (3), fA(m(s)) 6= φ; so there
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is some x ∈ fA(m(s)). Now consider a map m′ like m except that
m′(t) = x, and consider 〈W, {RA | A ∈ =}, v〉m′ ; since t does not appear
in Γk, it remains that vm′(Γk) = 1; and since m′(t) = x and m′(s) =

m(s), m′(t) ∈ fA(m′(s)); so vm′(Γk) = 1 and 〈m′(s),m′(t)〉 ∈ RA; so
vm′(Γk ∪ {As/t}) = 1; so by VC*, vm′(u)(B) = 1. But since t 6= u,
m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the assump-
tion: Γk |=∗

Cx Bu, which is to say, Γk |=∗
Cx Pk.

(AMS2) If Pk arises by AMS2, then the picture is like this,

h (A > B)s

i (B > A)s

j As/t

k Bs/t

where h, i, j < k and Pk is Bs/t. Where this rule is in NCx, Cx includes
condition (4). By assumption, Γh |=∗

Cx (A > B)s, Γi |=∗
Cx (B > A)s and

Γj |=∗
Cx As/t; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆

Γk; so by L4.1, Γk |=∗
Cx (A > B)s, Γk |=∗

Cx (B > A)s, and Γk |=∗
Cx As/t.

Suppose Γk 6|=∗
Cx Bs/t; then by VC*, there is some Cx interpretation

〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1 but m(t) 6∈ fB(m(s)); since
vm(Γk) = 1, by VC*, vm(s)(A > B) = 1, vm(s)(B > A) = 1; andm(t) ∈
fA(m(s)). Suppose w ∈ fA(m(s)); then m(s)RAw and since vm(s)(A >

B) = 1, by TC(>), vw(B) = 1; so w ∈ [B] and, generalizing, we have
that fA(m(s)) ⊆ [B]. Suppose w ∈ fB(m(s)); then m(s)RBw and since
vm(s)(B > A) = 1, by TC(>), vw(A) = 1; so w ∈ [A] and, generalizing,
we have that fB(m(s)) ⊆ [A]. So fA(m(s)) ⊆ [B] and fB(m(s)) ⊆ [A];
so by condition (4), fA(m(s)) = fB(m(s)); thus since m(t) ∈ fA(m(s)),
m(t) ∈ fB(m(s)). This is impossible; reject the assumption: Γk |=∗

Cx

Bs/t, which is to say, Γk |=∗
Cx Pk.

(AMS3) If Pk arises by AMS3, then the picture is like this,

i ¬(A > ¬B)s

j (A ∧ B)s/t

k As/t

where i, j < k and Pk is As/t. Where this rule is in NCx, Cx includes
condition (5). By assumption, Γi |=∗

Cx ¬(A > ¬B)s and Γj |=∗
Cx (A ∧ B)s/t;

but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1, Γk |=∗
Cx

¬(A > ¬B)s, and Γk |=∗
Cx (A ∧ B)s/t. Suppose Γk 6|=∗

Cx As/t; then
by VC*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but m(t) 6∈ fA(m(s)); since vm(Γk) = 1, by VC*,
vm(s)(¬(A > ¬B)) = 1, and m(t) ∈ fA∧B(m(s)). Since vm(s)(¬(A >

¬B)) = 1, by TC(¬), vm(s)(A > ¬B) = 0; so by TC(>), there is some
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w ∈ W such that m(s)RAw and vw(¬B) = 0; so by TC(¬), vw(B) =

1; but w ∈ fA(m(s)); so fA(m(s)) ∩ [B] 6= φ; so by condition (5),
fA∧B(m(s)) ⊆ fA(m(s)); som(t) ∈ fA(m(s)). This is impossible; reject
the assumption: Γk |=∗

Cx As/t, which is to say, Γk |=∗
Cx Pk.

(AMRS) If Pk arises by AMRS, then the picture is like this,

h As/t

i As/u

j Q(t)

k Q(u)

where h, i, j < k and Pk is Q(u). Suppose Q(t) is some Bt and Q(u)

is Bu. Where this rule is in NCx, Cx includes condition (6). By as-
sumption, Γh |=∗

Cx As/t, Γi |=∗
Cx As/u and Γj |=∗

Cx Bt; but by the nature
of access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1, Γk |=∗

Cx As/t,
Γk |=∗

Cx As/u, and Γk |=∗
Cx Bt. Suppose Γk 6|=∗

Cx Bu; then by VC*, there is
some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1

but vm(u)(B) = 0; since vm(Γk) = 1, by VC*, m(t) ∈ fA(m(s)),
m(u) ∈ fA(m(s)), and vm(t)(B) = 1. With the first two of these, by
condition (6), m(t) = m(u); so vm(u)(B) = 1. This is impossible; reject
the assumption: Γk |=∗

Cx Bu, which is to say, Γk |=∗
Cx Pk. And similarly

when Q(t) is Bt/v, Bv/t, or Bt/t.

(AMDL) If Pk arises by AMDL, then the picture is like this,

h As

i As/t

j Q(t)

k Q(s)

or

h As

i As/t

j Q(s)

k Q(t)

where h, i, j < k and, in the left-hand case, Pk is Q(s). Suppose Q(t) is
of the sort Bt/v and Q(s) is Bs/v. Where this rule is inNCx, Cx includes
condition (7). By assumption, Γh |=∗

Cx As, Γi |=∗
Cx As/t and Γj |=∗

Cx Bt/v;
but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1,
Γk |=∗

Cx As, Γk |=∗
Cx As/t, and Γk |=∗

Cx Bt/v. Suppose Γk 6|=∗
Cx Bs/v; then

by VC*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but 〈m(s),m(v)〉 6∈ RB; since vm(Γk) = 1, by VC*,
vm(s)(A) = 1, m(t) ∈ fA(m(s)), and 〈m(t),m(v)〉 ∈ RB. From the first
of these,m(s) ∈ [A]; so by condition (7),m(s) = m(t); so 〈m(s),m(v)〉 ∈
RB. This is impossible; reject the assumption: Γk |=∗

Cx Bs/v which is to
say, Γk |=∗

Cx Pk. And similarly whenQ(t) is Bt, Bv/t or Bt/t. And similarly
in the right-hand case.

———
For any i, Γi |=∗

Cx Pi.
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 4.2 NCx is complete: if Γ |=Cx A then Γ ǸCx A.

Suppose Γ |=Cx A; then Γ0 |=∗
Cx A0; we show that Γ0 `∗NCx A0. Again, this reduces

to the standard notion. For the following, fix on some particular constraint(s)
x. Then definitions of consistency etc. are relative to it.

C Γ is  iff there is no As such that Γ `∗NCx As and Γ `∗NCx ¬As.

L4.2 If s is 0 or appears in Γ , and Γ 6`∗NCx ¬Ps, then Γ ∪ {Ps} is consistent.
Reasoning parallel to L2.2 for NKα.

L4.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 for NKα.

M Γ is  - iff for any As either Γ `∗NCx As or Γ `∗NCx ¬As.

S Γ is a  set for 2 iff for every formula of the form ¬2As, if
Γ `∗NCx ¬2As then there is some t such that Γ `∗NCx ¬At.
Γ is a  set for > iff for any formula of the form ¬(A > B)s,
if Γ `∗NCx ¬(A > B)s then there is some t such that Γ `∗NCx As/t and
Γ `∗NCx ¬Bt.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L4.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included inΩi−1, let Ei

be like Ei−1 but without As, and set,
Ωi = Ωi−1 if Ωi−1 `∗NCx ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NCx ¬As

and
Ωi = Ωi∗ if As is not of the form ¬2Ps or ¬(P > Q)s

Ωi = Ωi∗ ∪ {¬Pt} if As is of the form ¬2Ps

Ωi = Ωi∗ ∪ {Ps/t,¬Qt} if As is of the form ¬(P > Q)s

-where t is the first subscript not included in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L4.4 For any s included in Γ ′, Γ ′ is s-maximal.
Reasoning parallel to L2.4 for NKα.
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L4.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i)Ωk−1, (ii)Ωk∗ = Ωk−1 ∪ {As}, (iii)Ωk∗ ∪ {¬Pt} or
(iv) Ωk∗ ∪ {Ps/t,¬Qt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is

0 or in Ωk−1 and Ωk−1 6`∗NCx ¬As; so by L4.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) SupposeΩk isΩk∗ ∪ {¬Pt}. In this case, as above,Ωk∗ is consist-
ent and by construction, ¬2Ps ∈ Ωk∗ . Suppose Ωk is inconsist-
ent. Then there are Au and ¬Au such that Ωk∗ ∪ {¬Pt} `∗NCx Au

and Ωk∗ ∪ {¬Pt} `∗NCx ¬Au. So reason as follows,

1 Ωk∗

2 >t A (g, 2Iυ)

3 ¬Pt A (c, ¬E)

4 Au from Ωk∗ ∪ {¬Pt}

5 ¬Au from Ωk∗ ∪ {¬Pt}

6 Pt 3-5 ¬E
7 2Ps 2-6 2Iυ

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NCx 2Ps; but
¬2Ps ∈ Ωk∗ ; so Ωk∗ `∗NCx ¬2Ps; so Ωk∗ is inconsistent. This is
impossible; reject the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {Ps/t,¬Qt}. In this case, as above, Ωk∗ is
consistent and by construction, ¬(P > Q)s ∈ Ωk∗ . Suppose Ωk

is inconsistent. Then there are Au and ¬Au such that Ωk∗ ∪
{Ps/t,¬Qt} `∗NCx Au and Ωk∗ ∪ {Ps/t,¬Qt} `∗NCx ¬Au. So reason
as follows,

1 Ωk∗

2 Ps/t A (g, >I)

3 ¬Qt A (c, ¬E)

4 Au from Ωk∗ ∪ {Ps/t,¬Qt}

5 ¬Au from Ωk∗ ∪ {Ps/t,¬Qt}

6 Qt 3-5 ¬E
7 (P > Q)s 2-6 >I
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where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NCx (P > Q)s;
but ¬(P > Q)s ∈ Ωk∗ ; so Ωk∗ `∗NCx ¬(P > Q)s; so Ωk∗ is incon-
sistent. This is impossible; reject the assumption: Ωk is consist-
ent.

———
For any i, Ωi is consistent.

L4.6 If Γ0 is consistent, then Γ ′ is consistent.
Reasoning parallel to L2.6 for NKα.

L4.7 If Γ0 is consistent, then Γ ′ is a scapegoat set for 2 and >.
For 2. Suppose Γ0 is consistent and Γ ′ `∗NCx ¬2Ps. By L4.6, Γ ′ is con-
sistent; and by the constraints on subscripts, s is included in Γ ′. Since
Γ ′ is consistent, Γ ′ 6`∗NCx ¬¬2Ps; so there is a stage in the construction
process where Ωi∗ = Ωi−1 ∪ {¬2Ps} and Ωi = Ωi∗ ∪ {¬Pt}; so by con-
struction, ¬Pt ∈ Γ ′; so Γ ′ `∗NCx ¬Pt. So Γ ′ is a scapegoat set for 2.
For >. Suppose Γ0 is consistent and Γ ′ `∗NCx ¬(P > Q)s. By L4.6, Γ ′

is consistent; and by the constraints on subscripts, s is included in Γ ′.
Since Γ ′ is consistent, Γ ′ 6`∗NCx ¬¬(P > Q)s; so there is a stage in the
construction process where Ωi∗ = Ωi−1 ∪ {¬(P > Q)s} and Ωi = Ωi∗ ∪
{Ps/t,¬Qt}; so by construction, Ps/t ∈ Γ ′ and ¬Qt ∈ Γ ′; so Γ ′ `∗NCx Ps/t

and Γ ′ `∗NCx ¬Qt. So Γ ′ is a scapegoat set for >.

C(I) We construct an interpretation I = 〈W, {RA | A ∈ =}, v〉 based on Γ ′ as
follows. Let W have a member ws corresponding to each subscript s

included in Γ ′, except that in C1, if there is some A such that Γ ′ `∗NC1 As

and Γ ′ `∗NC1 As/t then ws = wt, and in C2, if there is some A such
that Γ ′ `∗NC2 As/t and Γ ′ `∗NC2 As/u then wt = wu (we could do this, in
the usual way, by establishing equivalence classes from members ofW).
Then 〈ws, wt〉 ∈ RA iff Γ ′ `∗NCx As/t; and vws(p) = 1 iff Γ ′ `∗NCx ps.
Note that the specification is consistent for C1 and C2: Say P(s) is some
ps, Ps/v, Pv/s or Ps/s. (i) Supposews = wt and Γ ′ `∗NC1 P(s). Sincews =

wt there is some A such that Γ ′ `∗NC1 As and Γ ′ `∗NC1 As/t; so by AMDL,
Γ ′ `∗NC1 P(t). And similarly ifws = wt and Γ ′ `∗NC1 P(t), then Γ ′ `∗NC1 P(s).
(ii) Suppose wt = wu and Γ ′ `∗NC2 P(t). Since wt = wu, there is some A

such that Γ ′ `∗NC2 As/t and Γ ′ `∗NC2 As/u; so by AMRS, Γ ′ `∗NC2 P(u). And
similarly if wt = wu and Γ ′ `∗NC2 P(u), then Γ ′ `∗NC2 P(t).

L4.8 If Γ0 is consistent then for 〈W, {RA |A ∈ =}, v〉 constructed as above, and
for any s included in Γ ′, vws(A) = 1 iff Γ ′ `∗NCx As.
Suppose Γ0 is consistent and s is included in Γ ′. By L4.4, Γ ′ is s-maximal.
By L4.6 and L4.7, Γ ′ is consistent and a scapegoat set for2 and>. Now
by induction on the number of operators in As,
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Basis: IfAs has no operators, then it is a parameter ps and by construc-
tion, vws(p) = 1 iff Γ ′ `∗NCx ps. So vws(A) = 1 iff Γ ′ `∗NCx As.

Assp: For any i, 0 6 i < k, if As has i operators, then vws(A) = 1 iff
Γ ′ `∗NCx As.

Show: If As has k operators, then vws(A) = 1 iff Γ ′ `∗NCx As.
If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧Q)s, (P ∨Q)s, (P ≡ Q)s, 2Ps,3Ps or (P > Q)s where P and
Q have < k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P) = 1; so by
TC(¬), vws(P) = 0; so by assumption, Γ ′ 6`∗NCx Ps; so by s-
maximality, Γ ′ `∗NCx ¬Ps, where this is to say, Γ ′ `∗NCx As. (ii) Sup-
pose Γ ′ `∗NCx As; then Γ ′ `∗NCx ¬Ps; so by consistency, Γ ′ 6`∗NCx Ps;
so by assumption, vws(P) = 0; so by TC(¬), vws(¬P) = 1, where
this is to say, vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NCx As.

(⊃)

(∧)
(∨)
(≡)
(2) As is2Ps. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NCx As; then vws(2P) =

1 but Γ ′ 6`∗NCx 2Ps. From the latter, by s-maximality, Γ ′ `∗NCx ¬2Ps;
so, since Γ ′ is a scapegoat set for 2, there is some t such that
Γ ′ `∗NCx ¬Pt; so by consistency, Γ ′ 6`∗NCx Pt; so by assumption,
vwt(P) = 0; so by TC(2)υ, vws(2P) = 0. This is impossible;
reject the assumption: if vws(A) = 1, then Γ ′ `∗NCx As.
(ii) Suppose Γ ′ `∗NCx As but vws(A) = 0; then Γ ′ `∗NCx 2Ps but
vws(2P) = 0. From the the latter, by TC(2)υ, there is some
wt ∈ W such that vwt(P) = 0; so by assumption, Γ ′ 6`∗NCx Pt;
but since wt ∈ W, by construction, t appears in Γ ′ so by (2Eυ),
Γ ′ `∗NCx Pt. This is impossible; reject the assumption: if Γ ′ ǸCx As

then vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NCx As.
(3)
(>) As is (P > Q)s. Suppose vws(A) = 1 but Γ ′ 6`∗NCx As; then

vws(P > Q) = 1 but Γ ′ 6`∗NCx (P > Q)s. From the latter, by s-
maximality, Γ ′ `∗NCx ¬(P > Q)s; so, since Γ ′ is a scapegoat set for
>, there is some t such that Γ ′ `∗NCx Ps/t and Γ ′ `∗NCx ¬Qt; from
the first, by construction, 〈ws, wt〉 ∈ RP; and from the second,
by consistency, Γ ′ 6`∗NCx Qt; so by assumption, vwt(Q) = 0; so by
TC(>), vws(P > Q) = 0. This is impossible; reject the assump-
tion: if vws(A) = 1, then Γ ′ `∗NCx As.
(ii) Suppose Γ ′ `∗NCx As but vws(A) = 0; then Γ ′ `∗NCx (P > Q)s

but vws(P > Q) = 0. From the the latter, by TC(>), there is
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some wt ∈ W such that 〈ws, wt〉 ∈ RP and vwt(Q) = 0; from
the first of these, by construction, Γ ′ `∗NCx Ps/t; and from the
second, by assumption, Γ ′ 6`∗NCx Qt; but by (>E), Γ ′ `∗NCx Qt. This
is impossible; reject the assumption: if Γ ′ ǸCx As then vws(A) =

1. So vws(A) = 1 iff Γ ′ `∗NCx As.
———
For any As, vws(A) = 1 iff Γ ′ `∗NCx As.

L4.9 If Γ0 is consistent, then 〈W, {RA | A ∈ =}, v〉 constructed as above is a Cx
interpretation.
In each case, we need to show that the interpretation meets the condi-
tion(s) x. Suppose Γ0 is consistent.

(1) If (1) is in Cx, then AMP1 is in NCx. Suppose wt ∈ fA(ws); then
〈ws, wt〉 ∈ RA; so by construction, Γ ′ `∗NCx As/t; so by AMP1,
Γ ′ `∗NCx At; so by L4.8, vwt(A) = 1; sowt ∈ [A]. So fA(ws) ⊆ [A].

(2) If (2) is in Cx then AMP2 is in NCx. Suppose ws ∈ [A]; then
vws(A) = 1; so by L4.8, Γ ′ `∗NCx As; so by AMP2, Γ ′ `∗NCx As/s; so
by construction, 〈ws, ws〉 ∈ RA; so ws ∈ fA(ws).

(3) If (3) is inCx then AMS1 is inNCx. Suppose [A] 6= φ but fA(ws) =

φ. From the former, there is somewt ∈ W such that vwt(A) = 1;
so by L4.8, Γ ′ `∗NCx At; so by (3Iυ), Γ ′ `∗NCx 3As. From the lat-
ter, there is no wu such that wsRAwu; so there is no wu such
that wsRAwu and vwu(B) = 0, and there is no wu such that
wsRAwu and vwu(¬B) = 0; so by TC(>), vws(A > B) = 1

and vws(A > ¬B) = 1; so by L4.8, Γ ′ `∗NCx (A > B)s and
Γ ′ `∗NCx (A > ¬B)s. So reason as follows,

1 Γ ′

2 3As from Γ ′

3 (A > B)s from Γ ′

4 (A > ¬B)s from Γ ′

5 As/t A (g, 2 AMS1)

6 3As A (c, ¬I)

7 Bt 3,5 >E
8 ¬Bt 4,5 >E
9 ¬3As 6-8 ¬I
10 ¬3As 2,5-9 AMS1

So Γ ′ `∗NCx ¬3As; and since by L4.6, Γ ′ is consistent, Γ ′ 6`∗NCx

3As. This is impossible; reject the assumption: if [A] 6= φ, then
fA(ws) 6= φ.

(4) If (4) is in Cx then AMS2 is in NCx. Suppose fA(ws) ⊆ [B]

and fB(ws) ⊆ [A]. Then any x ∈ W such that wsRAx has
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vx(B) = 1 and any y ∈ W such that wsRBy has vy(A) = 1;
so by TC(>), vws(A > B) = 1 and vws(B > A) = 1; so by L4.8,
Γ ′ `∗NCx (A > B)s and Γ ′ `∗NCx (B > A)s. Suppose wt ∈ fA(ws);
then by construction, Γ ′ `∗NCx As/t; so by AMS2, Γ ′ `∗NCx Bs/t;
so by construction, wt ∈ fB(ws). Suppose wt ∈ fB(ws); then
by construction, Γ ′ `∗NCx Bs/t; so by AMS2, Γ ′ `∗NCx As/t; so by
construction, wt ∈ fA(ws). So fA(ws) = fB(ws).

(5) If (5) is in Cx then AMS3 is in NCx. Suppose fA(ws) ∩ [B] 6= φ

but fA∧B(ws) 6⊆ fA(ws). From the former, there is some wt ∈
fA(ws) such that vwt(B) = 1; so by TC(¬), vwt(¬B) = 0; so
by TC(>), vws(A > ¬B) = 0; so by TC(¬), vws(¬(A > ¬B)) =

1; so by L4.8, Γ ′ `∗NCx ¬(A > ¬B)s. From the latter, there is
some wu such that wu ∈ fA∧B(ws) but wu 6∈ fA(ws). From
the first of these, by construction, Γ ′ `∗NCx (A ∧ B)s/u; so by
AMS3, Γ ′ `∗NCx As/u; so by construction, wu ∈ fA(ws). This
is impossible; reject the assumption: if fA(ws) ∩ [B] 6= φ then
fA∧B(ws) ⊆ fA(ws).

(6) Suppose (6) is in Cx, wt ∈ fA(ws) and wu ∈ fA(ws). Then by
construction, Γ ′ `∗NCx As/t and Γ ′ `∗NCx As/u; and by construction,
since we are in C2, wt = wu.

(7) Suppose (7) is in Cx, ws ∈ [A] and wt ∈ fA(ws). Since ws ∈ [A],
vws(A) = 1; so by L4.8, Γ ′ `∗NCx As; and since wt ∈ fA(ws), by
construction, Γ ′ `∗NCx As/t. So by construction, since we are in
C1, ws = wt.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.

L4.10 If Γ0 is consistent, then vm(Γ0) = 1.
Reasoning parallel to L2.10 for NKα.

Main result: Suppose Γ |=Cx A but Γ 6 ǸCx A. Then Γ0 |=∗
Cx A0 but Γ0 6`∗NCx A0.

By (DN), if Γ0 `∗NCx ¬¬A0, then Γ0 `∗NCx A0; so Γ0 6`∗NCx ¬¬A0; so by L4.2,
Γ0 ∪ {¬A0} is consistent; so by L4.9 and L4.10, there is a Cx interpretation
〈W, {RA | A ∈ =}, v〉m constructed as above such that vm(Γ0 ∪ {¬A0}) = 1; so
vm(0)(¬A) = 1; so by TC(¬), vm(0)(A) = 0; so vm(Γ0) = 1 and vm(0)(A) = 0;
so by VC*, Γ0 6|=∗

Cx A0. This is impossible; reject the assumption: if Γ |=Cx A,
then Γ ǸCx A.

5  : IL (. 6)
5.1  /  
LIL The  consists of propositional parameters p0, p1 . . . with

the operators, ∧, ∨,⇁, and =. Each propositional parameter is a -
; ifA and B are formulas, so are (A∧B), (A∨B),⇁A, and (A = B).
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IIL An  is a triple 〈W,R, v〉 whereW is a set of worlds, R
is a subset ofW2 = W×W, and v is a function such that for any w ∈ W

and p, vw(p) = 1 or vw(p) = 0. For x, y, z ∈ W, an interpretation is
subject to the conditions,

ρ for all x, xRx reflexivity
τ for all x, y, z, if xRy and yRz then xRz transitivity
h for any parameter p, if vx(p) = 1, and xRy,

then vy(p) = 1

heredity

We think of worlds as representing a state of information at a given
time. vw(p) = 1 when p is proved at state w. The heredity condition
guarantees that what is proved at one stage remains proved at the next.
Notice that vw(p) = 0 does not indicate that p is false – but rather that
p isn’t proved.

TIL For complex expressions,

(∧) vw(A ∧ B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.
(∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
(⇁) vw(⇁A) = 1 if all x ∈ W such that wRx have vx(A) = 0, and 0

otherwise.
(=) vw(A = B) = 1 if all x ∈ W such that wRx have either vx(A) = 0

or vx(B) = 1, and 0 otherwise.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ ; then,

VIL Γ |=IL A iff there is no IL interpretation 〈W,R, v〉 and w ∈ W such that
vw(Γ) = 1 and vw(A) = 0.

5.2  : NIL
Augment the language for intuionistic logic to include expressions with sub-
scripts and expressions of the sort s.t as for NKα, along with a unary operator,
∼. Intuitively, ∼A indicates that A is not (yet) proven. There is one new rule
for the heredity condition. Otherwise, rules are as in NKρτ with ∼ like ¬, and
rules for = and⇁ on the analogy of −3 and 2¬.

R Ps

Ps

H Ps

s.t

Pt

where P includes no instance of ∼

∧I Ps

Qs

(P ∧ Q)s

∧E (P ∧ Q)s

Ps

∧E (P ∧ Q)s

Qs
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∨I Ps

(P ∨ Q)s

∨I Ps

(Q ∨ P)s

∼I Ps

Qt

∼Qt

∼Ps

∼E ∼Ps

Qt

∼Qt

Ps

∨E (P ∨ Q)s

Ps

Rt

Qs

Rt

Rt

=I s.t

Pt

Qt

(P = Q)s

where t does not appear in any undischarged
premise or assumption

=E (P = Q)s

s.t

Pt

Qt

AMρ

s.s

⇁I s.t

∼Pt

⇁Ps

where t does not appear in any undischarged
premise or assumption

⇁E ⇁Ps

s.t

∼Pt

AMτ s.t

t.u

s.u

Every subscript is 0, appears in a premise, or appears in the t-place of an ac-
cessible assumption for=I or⇁I.Where the members of Γ andA are formulas
in the original language for intuitionistic logic (without subscripts and without
∼), let let the members of Γ0 be the formulas in Γ , each with subscript 0. Then,

NIL Γ ǸIL A iff there is an NIL derivation of A0 from the members of Γ0.

As examples, here are instances of the more interesting standard axioms
for intuitionistic logic. Note that our account of a derivation guarantees that
∼ is not an operator in any of A, B, or C.

A1 ǸIL A = (B = A)

1 0.1 A (g, =I)
2 A1

3 1.2 A (g, =I)
4 B2

5 A2 2,3 H
6 (B = A)1 3-5 =I
7 [A = (B = A)]0 1-6 =I
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A2 ǸIL (A = B) = [(A = (B = C)) = (A = C)]

1 0.1 A (g, =I)
2 (A = B)1

3 1.2 A (g, =I)
4 (A = (B = C))2

5 2.3 A (g, =I)
6 A3

7 1.3 3,5 AMτ

8 B3 2,7,6 =E
9 (B = C)3 4,5,6 =E
10 3.3 AMρ

11 C3 9,10,8 =E
12 (A = C)2 5-11 =I
13 [(A = (B = C)) = (A = C)]1 3-12 =I
14 ((A = B) = [(A = (B = C)) = (A = C)])0 1-13 =I

A3 ǸIL A = (B = (A ∧ B))

A4 ǸIL (A ∧ B) = A

A5 ǸIL (A ∧ B) = B

A6 ǸIL A = (A ∨ B)

A7 ǸIL B = (A ∨ B)

A8 ǸIL (A = C) = [(B = C) = ((A ∨ B) = C)]

A9 ǸIL (A = B) = [(A = ⇁B) = ⇁A]

1 0.1 A (g, =I)
2 (A = B)1

3 1.2 A (g, =I)
4 (A = ⇁B)2

5 2.3 A (g,⇁I)

6 A3 A (c, ∼I)

7 1.3 3,5 AMτ

8 B3 2,7,6 =E
9 ⇁B3 4,5,6 =E
10 3.3 AMρ

11 ∼B3 9,10⇁E
12 ∼A3 6-11 ∼I
13 ⇁A2 5-12⇁I
14 [(A = ⇁B) = ⇁A]1 3-13 =I
15 ((A = B) = [(A = ⇁B) = ⇁A])0 1-14 =I
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A10 ǸIL ⇁A = (A = B)

1 0.1 A (g, =I)
2 ⇁A1

3 1.2 A (g, =I)
4 A2

5 ∼B2 A (c, ∼E)

6 A2 4 R
7 ∼A2 2,3⇁E
8 B2 5-7 ∼E
9 (A = B)1 3-8 =I
10 [⇁A = (A = B)]0 1-9 =I

A system with these axioms and MP (which we already have by AMρ with=E)
turns into classical logic if A10 is replaced by double negation,⇁⇁A = A. But
we cannot prove ⇁⇁A = A (or at least we cannot if our derivation system is
sound).

5.3   
Preliminaries: Begin with generalized notions of validity to include expressions
with subscripts and operator ‘∼’. First, as a supplement to TIL,

TIL (∼) vw(∼A) = 1 if vw(A) = 0, and 0 otherwise.

For a model 〈W,R, v〉, let m be a map from subscripts into W. Say 〈W,R, v〉m
is 〈W,R, v〉 with map m. Then, where Γ is a set of expressions of our language
for derivations, vm(Γ) = 1 iff for each As ∈ Γ , vm(s)(A) = 1, and for each s.t ∈
Γ , 〈m(s),m(t)〉 ∈ R. Now expand notions of validity to include subscripted
formulas, and alternate expressions as indicated in double brackets.

VIL* Γ |=∗
IL As [[s.t]] iff there is no IL interpretation 〈W,R, v〉m such that

vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R]].

NIL* Γ `∗NIL As [[s.t]] iff there is an NIL derivation of As [[s.t]] from the mem-
bers of Γ .

These notions reduce to the standard ones when all the members of Γ and A

have subscript 0 (and so do not include expressions of the sort s.t) and do not
include ‘∼’. For the following, cases omitted are like ones worked, and so left
to the reader.

 5.1 NIL is sound: If Γ ǸIL A then Γ |=IL A.

L5.1 If Γ ⊆ Γ ′ and Γ |=∗
IL Ps [[s.t]], then Γ ′ |=∗

IL Ps [[s.t]].
Reasoning parallel to that for L2.1 of NKα.
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Main result: For each line in a derivation let Pi be the expression on line i and
Γi be the set of all premises and assumptions whose scope includes line i. We
set out to show “generalized” soundness: if Γ `∗NIL P then Γ |=∗

IL P. As above, this
reduces to the standard result when P and all the members of Γ are formulas
with subscript 0 and do not include ‘∼’. Suppose Γ `∗NIL P. Then there is a
derivation of P from premises in Γ where P appears under the scope of the
premises alone. By induction on line number of this derivation, we show that
for each line i of this derivation, Γi |=∗

IL Pi. The case when Pi = P is the desired
result.

Basis: P1 is a premise or an assumption As [[s.t]]. Then Γ1 = {As} [[{s.t}]]; so for
any 〈W,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[〈m(s),m(t)〉 ∈ R]]; so there
is no 〈W,R, v〉m such that vm(Γ1) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈
R]]. So by VIL*, Γ1 |=∗

IL As [[s.t]], where this is just to say, Γ1 |=∗
IL P1.

Assp: For any i, 1 6 i < k, Γi |=∗
IL Pi.

Show: Γk |=∗
IL Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ∼I, ∼E,⇁I,⇁E, =I, =E, AMρ, AMτ or H. If Pk is
a premise or an assumption, then as in the basis, Γk |=∗

IL Pk. So suppose
Pk arises by one of the rules.

(R)

(∧I)

(∧E)

(∨I)

(∨E)

(∼I) If Pk arises by ∼I, then the picture is like this,

As

i Bt

j ∼Bt

k ∼As

where i, j < k and Pk is ∼As. By assumption, Γi |=∗
IL Bt and Γj |=∗

IL

∼Bt; but by the nature of access, Γi ⊆ Γk ∪ {As} and Γj ⊆ Γk ∪ {As};
so by L5.1, Γk ∪ {As} |=∗

IL Bt and Γk ∪ {As} |=∗
IL ∼Bt. Suppose Γk 6|=∗

IL

∼As; then by VIL*, there is an IL interpretation 〈W,R, v〉m such that
vm(Γk) = 1 but vm(s)(∼A) = 0; so by TIL(∼), vm(s)(A) = 1; so vm(Γk) =

1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VIL*, vm(t)(B) = 1

and vm(t)(∼B) = 1; from the latter, by TIL(∼), vm(t)(B) = 0. This is
impossible; reject the assumption: Γk |=∗

IL ∼As, which is to say, Γk |=∗
IL Pk.
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(∼E)

(⇁I) If Pk arises by⇁I, then the picture is like this,

s.t

i ∼At

k ⇁As

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is ⇁As. By assumption, Γi |=∗

IL ∼At;
but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by L5.1, Γk ∪ {s.t} |=∗

IL

∼At. Suppose Γk 6|=∗
IL ⇁As; then by VIL*, there is an IL interpretation

〈W,R, v〉m such that vm(Γk) = 1 but vm(s)(⇁A) = 0; so by TIL(⇁),
there is somew ∈ W such thatm(s)Rw and vw(A) = 1. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,R, v〉m′ ; since t

does not appear in Γk, it remains that vm′(Γk) = 1; and sincem′(t) = w

andm′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk∪ {s.t}) = 1; so by VIL*,
vm′(t)(∼A) = 1; so by TIL(∼), vm′(A) = 0. Butm′(t) = w; so vw(A) = 0.
This is impossible; reject the assumption: Γk |=∗

IL ⇁As, which is to say,
Γk |=∗

IL Pk.

(⇁E) If Pk arises by⇁E, then the picture is like this,

i ⇁As

j s.t

k ∼At

where i, j < k and Pk is ∼At. By assumption, Γi |=∗
IL ⇁As and Γj |=∗

IL s.t;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L5.1, Γk |=∗

IL ⇁As

and Γk |=∗
IL s.t. Suppose Γk 6|=∗

IL ∼At; then by VIL*, there is some IL
interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(t)(∼A) = 0; so
by TIL(∼), vm(t)(A) = 1. Since vm(Γk) = 1, by VIL*, vm(s)(⇁A) = 1

and 〈m(s),m(t)〉 ∈ R; from the first of these, by TIL(⇁), any w such
thatm(s)Rw has vw(A) = 0; so vm(t)(A) = 0. This is impossible; reject
the assumption: Γk |=∗

IL At, which is to say, Γk |=∗
IL Pk.

(=I) If Pk arises by =I, then the picture is like this,

s.t

At

i Bt

k (A = B)s

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is (A = B)s. By assumption, Γi |=∗

IL
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Bt; but by the nature of access, Γi ⊆ Γk ∪ {s.t, At}; so by L5.1, Γk ∪
{s.t, At} |=∗

IL Bt. Suppose Γk 6|=∗
IL (A = B)s; then by VIL*, there is an IL

interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(s)(A = B) = 0;
so by TIL(=), there is some w ∈ W such that m(s)Rw with vw(A) = 1

and vw(B) = 0. Now consider a map m′ like m except that m′(t) = w,
and consider 〈W,R, v〉m′ ; since t does not appear in Γk, it remains that
vm′(Γk) = 1; since m′(t) = w and m′(s) = m(s), vm′(t)(A) = 1 and
〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t, At}) = 1; so by VIL*, vm′(t)(B) = 1.
Butm′(t) = w; so vw(B) = 1. This is impossible; reject the assumption:
Γk |=∗

IL (A = B)s, which is to say, Γk |=∗
IL Pk.

(=E)

(AMρ)

(AMτ) If Pk arises by AMτ, then the picture is like this,

i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. By assumption, Γi |=∗
IL s.t and Γj |=∗

IL t.u;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L5.1, Γk |=∗

IL s.t

and Γk |=∗
IL t.u. Suppose Γk 6|=∗

IL s.u; then by VIL*, there is some IL
interpretation 〈W,R, v〉m such that vm(Γk) = 1 but 〈m(s),m(u)〉 6∈ R;
since vm(Γk) = 1, by VIL*, 〈m(s),m(t)〉 ∈ R and 〈m(t),m(u)〉 ∈ R;
but IL includes condition τ; so for any 〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 ∈ R; so
〈m(s),m(u)〉 ∈ R. This is impossible; reject the assumption: Γk |=∗

IL s.u,
which is to say, Γk |=∗

IL Pk.

(H) If Pk arises by H, then the picture is like this,

i As

j s.t

k At

where i, j < k, A has no instance of ‘∼’ and Pk is At. By assumption,
Γi |=∗

IL As and Γj |=∗
IL s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆

Γk; so by L5.1, Γk |=∗
IL As and Γk |=∗

IL s.t. Suppose Γk 6|=∗
IL At; then by

VIL*, there is some IL interpretation 〈W,R, v〉m such that vm(Γk) =

1 but vm(t)(A) = 0; since vm(Γk) = 1, by VIL*, vm(s)(A) = 1 and
〈m(s),m(t)〉 ∈ R.
Now, by induction on the number of operators in A, we show that for
A without ‘∼’, if vx(A) = 1 and xRy, then vy(A) = 1. Suppose xRy.

Basis: Suppose A is a parameter p and vx(A) = 1; then vx(p) = 1; so by
condition h, vy(p) = 1; so vy(A) = 1.
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Assp: For 0 6 i < k, if A has i operators and vx(A) = 1, then vy(A) =

1.
Show: If A has k operators and vx(A) = 1, then vy(A) = 1.

If A has k operators and no instance of ‘∼’ then it is of the form,
P ∧ Q, P ∨ Q,⇁P, or P = Q, where P and Q have < k operators.

(∧) Suppose A is P ∧ Q and vx(A) = 1; then vx(P ∧ Q) = 1; so by
TIL(∧), vx(P) = 1 and vx(Q) = 1; so by assumption, vy(P) = 1

and vy(Q) = 1; so by TIL(∧), vy(P ∧ Q) = 1; so vy(A) = 1.
(∨) Suppose A is P ∨ Q and vx(A) = 1; then vx(P ∨ Q) = 1; so by

TIL(∨), vx(P) = 1 or vx(Q) = 1; so by assumption, vy(P) = 1 or
vy(Q) = 1; so by TIL(∨), vy(P ∨ Q) = 1; so vy(A) = 1.

(⇁) SupposeA is⇁P and vx(A) = 1 but vy(A) = 0; then vx(⇁P) = 1

but vy(⇁P) = 0. From the former, by TIL(⇁), any w such that
xRw has vw(P) = 0. From the latter, by TIL(⇁), there is some
z ∈ W such that yRz and vz(P) = 1. But xRy and yRz so by τ,
xRz; so vz(P) = 0. This is impossible; reject the assumption: if
vx(A) = 1, then vy(A) = 1.

(=) Suppose A is P = Q and vx(A) = 1 but vy(A) = 0; then vx(P =

Q) = 1 but vy(P = Q) = 0. From the former, by TIL(=), any
w such that xRw has vw(P) = 0 or vw(Q) = 1. From the latter,
by TIL(=), there is some z ∈ W such that yRz where vz(P) = 1

and vz(Q) = 0. But xRy and yRz so by τ, xRz; so vz(P) = 0 or
vz(Q) = 1. This is impossible; reject the assumption: if vx(A) =

1, then vy(A) = 1.
———
For any such A, if vx(A) = 1, then vy(A) = 1.
So, returning to the case for (H), vm(t)(A) = 1. This is impossible;
reject the assumption: Γk |=∗

IL At, which is to say, Γk |=∗
IL Pk.

———
For any i, Γi |=∗

IL Pi.

 5.2 NIL is complete: if Γ |=IL A then Γ ǸIL A.

Suppose Γ |=IL A; then Γ0 |=∗
IL A0; we show that Γ0 `∗NIL A0. Again, this reduces

to the standard notion.

C Γ is  iff there is no As such that Γ `∗NIL As and Γ `∗NIL ∼As.

L5.2 If s is 0 or appears in Γ , and Γ 6`∗NIL ∼Ps, then Γ ∪ {Ps} is consistent.
Suppose s is 0 or appears in Γ and Γ 6`∗NIL ∼Ps but Γ ∪ {Ps} is inconsistent.
Then there is some At such that Γ ∪ {Ps} `∗NIL At and Γ ∪ {Ps} `∗NIL ∼At.
But then we can argue,
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1 Γ

2 Ps A (c, ∼I)

3 At from Γ ∪ {Ps}

4 ∼At from Γ ∪ {Ps}

5 ∼Ps 2-4 ∼I

where the assumption is allowed insofar as s is either 0 or appears in Γ ;
so Γ `∗NIL ∼Ps. But this is impossible; reject the assumption: if s is 0 or
introduced in Γ and Γ 6`∗NIL ∼Ps, then Γ ∪ {Ps} is consistent.

L5.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 of NKα.

M Γ is  - iff for any As either Γ `∗NIL As or Γ `∗NIL ∼As.

S Γ is a  set for ⇁ iff for every formula of the form ∼⇁As, if
Γ `∗NIL ∼⇁As then there is some t such that Γ `∗NIL s.t and Γ `∗NIL At.
Γ is a  set for = iff for every formula of the form ∼(A = B)s,
if Γ `∗NIL ∼(A = B)s then there is some t such that Γ `∗NIL s.t, Γ `∗NIL At

and Γ `∗NIL ∼Bt.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L5.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included inΩi−1, let Ei

be like Ei−1 but without As, and set,
Ωi = Ωi−1 if Ωi−1 `∗NIL ∼As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NIL ∼As

and
Ωi = Ωi∗ if As is not of the form ∼⇁Ps or ∼(P =

Q)s

Ωi = Ωi∗ ∪ {s.t, Pt} if As is of the form ∼⇁Ps

Ωi = Ωi∗ ∪ {s.t, Pt, ∼Qt} if As is of the form ∼(P = Q)s

-where t is the first subscript not included in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L5.4 For any s included in Γ ′, Γ ′ is s-maximal.

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 110

Suppose s is included in Γ ′ but Γ ′ is not s-maximal. Then there is some
As such that Γ ′ 6`∗NIL As and Γ ′ 6`∗NIL ∼As. For any i, each member of
Ωi−1 is in Γ ′; so if Ωi−1 `∗NIL ∼As then Γ ′ `∗NIL ∼As; but Γ ′ 6`∗NIL ∼As;
so Ωi−1 6`∗NIL ∼As; so since s is included in Γ ′, there is a stage in the
construction that sets Ωi∗ = Ωi−1 ∪ {As}; so by construction, As ∈ Γ ′;
so Γ ′ `∗NIL As. This is impossible; reject the assumption: Γ ′ is s-maximal.

L5.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i)Ωk−1, or (ii)Ωk∗ = Ωk−1∪{As}, (iii)Ωk∗∪{s.t, Pt}

or (iv) Ωk∗ ∪ {s.t, Pt, ∼Qt}.
(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s

is 0 or in Ωk−1 and Ωk−1 6`∗NIL ∼As; so by L5.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t, Pt}. In this case, as above, Ωk∗ is con-
sistent and by construction, ∼⇁Ps ∈ Ωk∗ . Suppose Ωk is incon-
sistent. Then there are Au and ∼Au such thatΩk∗ ∪ {s.t, Pt} `∗NIL

Au and Ωk∗ ∪ {s.t, Pt} `∗NIL ∼Au. So reason as follows,

1 Ωk∗

2 s.t A (g,⇁I)

3 Pt A (c, ∼I)

4 Au from Ωk∗ ∪ {s.t, Pt}

5 ∼Au from Ωk∗ ∪ {s.t, Pt}

6 ∼Pt 3-5 ∼I
7 ⇁Ps 2-6⇁I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIL ⇁Ps; but
∼⇁Ps ∈ Ωk∗ ; so Ωk∗ `∗NIL ∼⇁Ps; so Ωk∗ is inconsistent. This is
impossible; reject the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {s.t, Pt, ∼Qt}. In this case, as above, Ωk∗
is consistent and by construction, ∼(P = Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ∼Au such thatΩk∗ ∪
{s.t, Pt, ∼Qt} `∗NIL Au andΩk∗ ∪ {s.t, Pt, ∼Qt} `∗NIL ∼Au. So reason
as follows,
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1 Ωk∗

2 s.t A (g, =I)
3 Pt

4 ∼Qt A (c, ∼E)

5 Au from Ωk∗ ∪ {s.t, Pt, ∼Qt}

6 ∼Au from Ωk∗ ∪ {s.t, Pt, ∼Qt}

7 Qt 4-6 ∼E
8 (P = Q)s 2-7 =I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIL (P = Q)s;
but ∼(P = Q)s ∈ Ωk∗ ; soΩk∗ `∗NIL ∼(P = Q)s; soΩk∗ is inconsist-
ent. This is impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.

L5.6 If Γ0 is consistent, then Γ ′ is consistent.
Reasoning parallel to L2.6 for NKα.

L5.7 If Γ0 is consistent, then Γ ′ is a scapegoat set for⇁ and =.
For ⇁. Suppose Γ0 is consistent and Γ ′ `∗NIL ∼⇁Ps. By L5.6, Γ ′ is con-
sistent; and by the constraints on subscripts, s is included in Γ ′. Since
Γ ′ is consistent, Γ ′ 6`∗NIL ∼∼⇁Ps; so there is a stage in the construction
process where Ωi∗ = Ωi−1 ∪ {∼⇁Ps} and Ωi = Ωi∗ ∪ {s.t, Pt}; so by
construction, s.t ∈ Γ ′ and Pt ∈ Γ ′; so Γ ′ `∗NIL s.t and Γ ′ `∗NIL Pt. So Γ ′ is a
scapegoat set for⇁.
For =. Suppose Γ0 is consistent and Γ ′ `∗NIL ∼(P = Q)s. By L5.6, Γ ′

is consistent; and by the constraints on subscripts, s is included in Γ ′.
Since Γ ′ is consistent, Γ ′ 6`∗NIL ∼∼(P = Q)s; so there is a stage in the
construction process where Ωi∗ = Ωi−1 ∪ {∼(P = Q)s} and Ωi = Ωi∗ ∪
{s.t, Pt, ∼Qt}; so by construction, s.t ∈ Γ ′, Pt ∈ Γ ′ and ∼Qt ∈ Γ ′; so
Γ ′ `∗NIL s.t, Γ ′ `∗NIL Pt and Γ ′ `∗NIL ∼Qt. So Γ ′ is a scapegoat set for =.

C(I) We construct an interpretation I = 〈W,R, v〉 based on Γ ′ as follows. Let
W have a member ws corresponding to each subscript s included in Γ ′.
Then set 〈ws, wt〉 ∈ R iff Γ ′ `∗NIL s.t, and vws(p) = 1 iff Γ ′ `∗NIL ps.

L5.8 If Γ0 is consistent then for 〈W,R, v〉 constructed as above, and for any s

included in Γ ′, vws(A) = 1 iff Γ ′ `∗NIL As.
Suppose Γ0 is consistent and s is included in Γ ′. By L5.4, Γ ′ is s-maximal.
By L5.6 and L5.7, Γ ′ is consistent and a scapegoat set for⇁ and=. Now
by induction on the number of operators in As,

Basis: IfAs has no operators, then it is a parameter ps and by construc-
tion, vws(p) = 1 iff Γ ′ `∗NIL ps. So vws(A) = 1 iff Γ ′ `∗NIL As.
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Assp: For any i, 0 6 i < k, if As has i operators, then vws(A) = 1 iff
Γ ′ `∗NIL As.

Show: If As has k operators, then vws(A) = 1 iff Γ ′ `∗NIL As.
If As has k operators, then it is of the form ∼Ps, (P ∧ Q)s, (P ∨

Q)s, (P = Q)s, or⇁Ps where P and Q have < k operators.
(∼) As is ∼Ps. (i) Suppose vws(A) = 1; then vws(∼P) = 1; so by

TIL(∼), vws(P) = 0; so by assumption, Γ ′ 6`∗NIL Ps; so by s-
maximality, Γ ′ `∗NIL ∼Ps, where this is to say, Γ ′ `∗NIL As. (ii) Sup-
pose Γ ′ `∗NIL As; then Γ ′ `∗NIL ∼Ps; so by consistency, Γ ′ 6`∗NIL Ps; so
by assumption, vws(P) = 0; so by TIL(∼), vws(∼P) = 1, where
this is to say, vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NIL As.

(∧)
(∨)
(=)
(⇁) As is⇁Ps. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NIL As; then vws(⇁P) =

1 but Γ ′ 6`∗NIL ⇁Ps. From the latter, by s-maximality, Γ ′ `∗NIL

∼⇁Ps; so, since Γ ′ is a scapegoat set for⇁, there is some t such
that Γ ′ `∗NIL s.t and Γ ′ `∗NIL Pt; from the first, by construction,
〈ws, wt〉 ∈ R; and from the second, by assumption, vwt(P) = 1;
so by TIL(⇁), vws(⇁P) = 0. This is impossible; reject the as-
sumption: if vws(A) = 1, then Γ ′ `∗NIL As.
(ii) Suppose Γ ′ `∗NIL As but vws(A) = 0; then Γ ′ `∗NIL ⇁Ps but
vws(⇁P) = 0. From the latter, by TIL(⇁), there is some wt ∈
W such thatwsRwt and vwt(P) = 1; so by assumption, Γ ′ `∗NIL Pt;
but since wsRwt, by construction, Γ ′ `∗NIL s.t; so by (⇁E), Γ ′ `∗NIL

∼Pt; so by consistency, Γ ′ 6`∗NIL Pt. This is impossible; reject the
assumption: if Γ ′ ǸIL As then vws(A) = 1. So vws(A) = 1 iff
Γ ′ `∗NIL As.

———
For any As, vws(A) = 1 iff Γ ′ `∗NIL As.

L5.9 If Γ0 is consistent, then 〈W,R, v〉 constructed as above is an IL inter-
pretation.
For this, we need to show that the interpretation meets the ρ, τ and h

conditions.

(ρ) Suppose ws ∈ W. Then by construction, s is a subscript in Γ ′; so
by (AMρ), Γ ′ `∗NIL s.s; so by construction, 〈ws, ws〉 ∈ R and ρ is
satisfied.

(τ)
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(h) Suppose vws(p) = 1 and wsRwt. Then by construction, Γ ′ `∗NIL

ps and Γ ′ `∗NIL s.t; so by (H), Γ ′ `∗NIL pt; so by construction,
vwt(p) = 1.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.

L5.10 If Γ0 is consistent, then vm(Γ0) = 1.
Reasoning parallel to L2.10 for NKα.

Main result: Suppose Γ |=IL A but Γ 6 ǸIL A. Then Γ0 |=∗
IL A0 but Γ0 6`∗NIL A0. By a

simple derivation, if Γ0 `∗NIL ∼∼A0, then Γ0 `∗NIL A0; so Γ0 6`∗NIL ∼∼A0; so by L5.2,
Γ0 ∪ {∼A0} is consistent; so by L5.9 and L5.10, there is an IL interpretation
〈W,R, v〉m constructed as above such that vm(Γ0 ∪ {∼A0}) = 1; so vm(0)(∼A) =

1; so by TIL(∼), vm(0)(A) = 0; so vm(Γ0) = 1 and vm(0)(A) = 0; so by VIL*,
Γ0 6|=∗

IL A0. This is impossible; reject the assumption: if Γ |=IL A, then Γ ǸIL A.

6 - : Mx (. 7,8)
This section develops derivations for the systems for which Priest supplies
tableaux in his text: (classical logic), K3, LP and FDE. Thus there are no de-
rivations for his semantically described L3 and RM3.

6.1  /  
LM The  consists of propositional parameters p0, p1 . . . with the

operators, ¬, ∧, ∨, and ⊃. Each propositional parameter is a ;
if A and B are formulas, so are ¬A, (A∧B), (A∨B), and (A ⊃ B). A ≡ B

abbreviates (A ⊃ B) ∧ (B ⊃ A).

IM An  is a function v which assigns to each proposi-
tional parameter some subset of {0, 1}; so v(p) is φ, {1}, {0} or {1, 0}.
Intuitively, v(p) is true iff 1 ∈ v(p) and v(p) is false iff 0 ∈ v(p). Where
x is empty or includes some combination of the following constraints,

exc for no p are both 0 ∈ v(p) and 1 ∈ v(p) exclusion
exh for any p, either 1 ∈ v(p) or 0 ∈ v(p) exhaustion

v is an Mx interpretation when it meets the constraints from x. MCL

has both exc and exh,MK3 just exc,MLP just exh, andMFD neither exc nor
exh (these are classical logic, and Priest’s K3, LP and FDE).

TM For complex expressions,

(¬) 1 ∈ v(¬A) iff 0 ∈ v(A); 0 ∈ v(¬A) iff 1 ∈ v(A).
(∧) 1 ∈ v(A ∧ B) iff 1 ∈ v(A) and 1 ∈ v(B); 0 ∈ v(A ∧ B) iff 0 ∈ v(A) or

0 ∈ v(B).
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(∨) 1 ∈ v(A ∨ B) iff 1 ∈ v(A) or 1 ∈ v(B); 0 ∈ v(A ∨ B) iff 0 ∈ v(A) and
0 ∈ v(B).

(⊃) 1 ∈ v(A ⊃ B) iff 0 ∈ v(A) or 1 ∈ v(B); 0 ∈ v(A ⊃ B) iff 1 ∈ v(A)

and 0 ∈ v(B).

For a set Γ of formulas, 1 ∈ v(Γ) iff 1 ∈ v(A) for each A ∈ Γ ; then,

VM Γ |=Mx A iff there is no Mx interpretation v such that 1 ∈ v(Γ) but
1 6∈ v(A).

This account is adequate to the (superficially) different presentations in these
chapters of Priest. For the multivalued approach: classical logic has values
{0}, {1}, with {1} designated; K3 has φ, {0}, {1}, with {1} designated; LP has {0},
{1}, {0, 1}, with {1} and {0, 1} designated; and FDE has φ, {0}, {1}, {0, 1}, with
{1} and {0, 1} designated. For the relational approach, we identify the relation
as set membership. And a v as above maps to a Routley interpretation with
vw(p) = 1 iff 1 ∈ v(p), and vw∗(p) = 0 iff 0 ∈ v(p).5 Then, in each case,
conditions for truth and validity are as above.

6.2  : NMx
Introduce expressions of the sort A and A. Intuitively A indicates that A is
not false. Let \A\ and /A/ represent either A or A where what is represented
is constant in a given context, but \A\ and /A/ are opposite. And similarly for
//A// and \\A\\, though there need be no fixed relation between overlines on
\A\ and \\A\\. Except for a pair of new rules corresponding to conditions exc
and exh, derivation rules mirror ones for classical logic. (≡I) and (≡E) are now
derived.

D P

P

U P

P

R /P/

/P/

¬I /P/

//Q//

\\¬Q\\

\¬P\

¬E /¬P/

//Q//

\\¬Q\\

\P\

∧I /P/

/Q/

/P ∧ Q/

∧E /P ∧ Q/

/P/

∧E /P ∧ Q/

/Q/

5For this, see [4, sections 8.5.8, 8.7.17 and 8.7.18] along with L6.0 below.

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 115

∨I /P/

/P ∨ Q/

∨I /P/

/Q ∨ P/

⊃I /P/

\Q\

\P ⊃ Q\

⊃E \P ⊃ Q\

/P/

\Q\

∨E /P ∨ Q/

/P/

//R//

/Q/

//R//

//R//

≡I /P/

\Q\

/Q/

\P\

\P ≡ Q\

≡E \P ≡ Q\

/P/

\Q\

≡E \P ≡ Q\

/Q/

\P\

NMCL has all the rules. NMK3 has the I- and E-rules for ¬, ∧, ∨, ⊃ with (R)
and (D) (for truth down). NMLP has the I- and E-rules for ¬, ∧, ∨, ⊃ with (R)
and (U) (for truth up). NMFD has just the I- and E-rules for ¬, ∧, ∨, ⊃ with
(R). Where the members of Γ and A are expressions without overlines,

NM Γ ǸMx A iff there is an NMx derivation of A from the members of Γ .

Two-way derived rules carry over from CL with consistent overlines. Thus,
e.g.,

Impl /P ⊃ Q/ / . /¬P ∨ Q/

/¬P ⊃ Q/ / . /P ∨ Q/

MT, NB and DS appear in the forms,

MT /P ⊃ Q/

\¬Q\

/¬P/

NB /P ≡ Q/ /P ≡ Q/

\¬P\ \¬Q\

/¬Q/ /¬P/

DS /P ∨ Q/ /P ∨ Q/

\¬P\ \¬Q\

/Q/ /P/

As examples, here are derivations, cast to show the general forms, for MT
and the second form of DS.
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/P ⊃ Q/, \¬Q\
ǸMx

/¬P/

1 /P ⊃ Q/ P
2 \¬Q\ P

3 \P\ A (c, ¬I)

4 /Q/ 1,3 ⊃E
5 \¬Q\ 2 R
6 /¬P/ 3-5 ¬I

/P ∨ Q/, \¬Q\
ǸMx

/P/

1 /P ∨ Q/ P
2 \¬Q\ P

3 /P/ A (g, 1 ∨E)

4 /P/ 3 R

5 /Q/ A (g, 1 ∨E)

6 \¬P\ A (c, ¬E)

7 /Q/ 5 R
8 \¬Q\ 2 R
9 /P/ 6-8 ¬E
10 /P/ 1,3-4,5-9 ∨E

And for some particular results requiring (D) and (U), here are demonstrations
of standard rule and axioms for classical logic, making use of the full rule set
(see, e.g. [12, chapter 3]).

MP A,A ⊃ B ǸMCL
B

1 A P
2 A ⊃ B P

3 A 1 D
4 B 2,3 ⊃E

A1 ǸMCL
A ⊃ (B ⊃ A)

1 A A (g, ⊃I)

2 B A (g, ⊃I)

3 A 1 U
4 B ⊃ A 2-3 ⊃I
5 A ⊃ (B ⊃ A) 1-4 ⊃I

A2 ǸMCL
[A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]

1 A ⊃ (B ⊃ C) A (g, ⊃I)

2 A ⊃ B A (g, ⊃I)

3 A A (g, ⊃I)

4 A ⊃ B 2 U
5 B 3,4 ⊃E
6 A ⊃ (B ⊃ C) 1 U
7 B ⊃ C 3,6 ⊃E
8 B 5 D
9 C 7,8 ⊃E
10 A ⊃ C 3-9 ⊃I
11 (A ⊃ B) ⊃ (A ⊃ C) 2-10 ⊃I
12 [A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)] 1-11 ⊃I
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A3 ǸMCL
(¬A ⊃ ¬B) ⊃ [(¬A ⊃ B) ⊃ A]

1 ¬A ⊃ ¬B A (g, ⊃I)

2 ¬A ⊃ B A (g, ⊃I)

3 ¬A A (c, ¬E)

4 ¬A 3 U
5 B 2,4 ⊃E
6 ¬B 1,4 ⊃E
7 ¬B 6 U
8 A 3-7 ¬E
9 (¬A ⊃ B) ⊃ A 2-8 ⊃I
10 (¬A ⊃ ¬B) ⊃ [(¬A ⊃ B) ⊃ A] 1-9 ⊃I

Of course, there is not much point going back-and-forth between overline and
non-overline expressions in the full classical system. But these examples should
illustrate the rules. And overlines matter for the other systems.

6.3   
Preliminaries: Begin with generalized notions of truth and validity to include
expressions with overlines. First, holding as a generalization of TM. Say /A/

holds iff h(A) = 1 and otherwise fails. As usual, for the following, cases omitted
are like ones worked, and so left to the reader.

HM (B) h(p) = 1 iff 1 ∈ v(p), and otherwise h(p) = 0; h(p) = 1 iff 0 6∈ v(p),
and otherwise h(p) = 0.

(¬) h(/¬A/) = 1 iff h(\A\) = 0, and otherwise h(/¬A/) = 0.
(∧) h(/A ∧ B/) = 1 iff h(/A/) = 1 and h(/B/) = 1, and otherwise

h(/A ∧ B/) = 0.
(∨) h(/A ∨ B/) = 1 iff h(/A/) = 1 or h(/B/) = 1, and otherwise

h(/A ∨ B/) = 0.
(⊃) h(/A ⊃ B/) = 1 iff h(\A\) = 0 or h(/B/) = 1, and otherwise

h(/A ⊃ B/) = 0.

This formulation nicely mirrors the original classical definition TCL. And h

and v are related as one would expect.

L6.0 For anyMx interpretation v and corresponding h, h(A) = 1 iff 1 ∈ v(A),
and h(A) = 1 iff 0 6∈ v(A).

Basis: IfA has no operators, then it is a parameter p. ByHM(B), h(p) =

1 iff 1 ∈ v(p) and h(p) = 1 iff 0 6∈ v(p); so h(A) = 1 iff 1 ∈ v(A),
and h(A) = 1 iff 0 6∈ v(A).

Assp: For 0 6 i < k, if A has i operators, then h(A) = 1 iff 1 ∈ v(A),
and h(A) = 1 iff 0 6∈ v(A).
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Show: If A has k operators, then h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff
0 6∈ v(A).
If A has k operators, then it is of the form, ¬P, P ∧ Q, P ∨ Q, or
P ⊃ Q where P and Q have < k operators.

(¬) Suppose A is ¬P. By HM(¬), h(¬P) = 1 iff h(P) = 0; by assump-
tion, iff 0 ∈ v(P); by TM(¬) iff 1 ∈ v(¬P). By HM(¬), h(¬P) = 1

iff h(P) = 0; by assumption, iff 1 6∈ v(P); by TM(¬) iff 0 6∈ v(¬P).
So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff 0 6∈ v(A).

(∧) Suppose A is P ∧ Q. By HM(∧), h(P ∧ Q) = 1 iff h(P) = 1 and
h(Q) = 1; by assumption, iff 1 ∈ v(P) and 1 ∈ v(Q); by TM(∧)
iff 1 ∈ v(P ∧ Q). By HM(∧), h(P ∧ Q) = 1 iff h(P) = 1 and
h(Q) = 1; by assumption, iff 0 6∈ v(P) and 0 6∈ v(Q); by TM(∧) iff
0 6∈ v(P∧Q). So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff 0 6∈ v(A).

(∨)
(⊃) Suppose A is P ⊃ Q. By HM(⊃), h(P ⊃ Q) = 1 iff h(P) = 0 or

h(Q) = 1; by assumption, iff 0 ∈ v(P) or 1 ∈ v(Q); by TM(⊃)
iff 1 ∈ v(P ⊃ Q). By HM(⊃), h(P ⊃ Q) = 1 iff h(P) = 0 or
h(Q) = 1; by assumption, iff 1 6∈ v(P) or 0 6∈ v(Q); by TM(⊃)
iff 0 6∈ v(P ⊃ Q). So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff
0 6∈ v(A).

———
For any A, h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff 0 6∈ v(A).

So A holds iff 1 ∈ v(A), and otherwise fails; and A holds iff 0 6∈ v(A), and
otherwise fails. This permits natural generalizations for notions of validity. For
any v, where Γ is a set of expressions with or without overlines, say h(Γ) = 1 iff
h(/A/) = 1 for each /A/ ∈ Γ . Then,

VM* Γ |=∗
Mx

/A/ iff there is noMx interpretation v and corresponding h such
that h(Γ) = 1 but h(/A/) = 0.

NM* Γ `∗NMx
/A/ iff there is an NMx derivation of /A/ from the members of

Γ .

These notions reduce to the standard ones when all the members of Γ and
/A/ are without overlines. This is obvious for NM*. And similarly, we have
h(A) = 1 iff 1 ∈ v(A); so VM* collapses to VM.

 6.1 NMx is sound: If Γ ǸMx A then Γ |=Mx A.

L6.1 If Γ ⊆ Γ ′ and Γ |=∗
Mx

/P/, then Γ ′ |=∗
Mx

/P/.

Suppose Γ ⊆ Γ ′ and Γ |=∗
Mx

/P/, but Γ ′ 6|=∗
Mx

/P/. From the latter, by
VM*, there is some v and h such that h(Γ ′) = 1 but h(/P/) = 0. But
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since h(Γ ′) = 1 and Γ ⊆ Γ ′, h(Γ) = 1; so h(Γ) = 1 but h(/P/) = 0; so by
VM*, Γ 6|=∗

Mx
/P/. This is impossible; reject the assumption: if Γ ⊆ Γ ′

and Γ |=∗
Mx

/P/, then Γ ′ |=∗
Mx

/P/.

Main result: For each line in a derivation let Pi be the formula on line i (with or
without overlines) and set Γi equal to the set of all premises and assumptions
whose scope includes line i. We set out to show “generalized” soundness: if
Γ `∗NMx

/A/ then Γ |=∗
Mx

/A/. As above, this reduces to the standard result when
the members of Γ andA are without overlines. Suppose Γ `∗NMx

/A/. Then there
is a derivation of /A/ from premises in Γ where /A/ appears under the scope of
the premises alone. By induction on line number of this derivation, we show
that for each line i of this derivation, Γi |=∗

Mx Pi. The case when Pi = /A/ is
the desired result.

Basis: P1 is a premise or an assumption /A/. Then Γ1 = {/A/}; so h(Γ1) = 1 iff
h(/A/) = 1; so there is no h such that h(Γ1) = 1 but h(/A/) = 0. So by
VM*, Γ1 |=∗

Mx
/A/, where this is just to say, Γ1 |=∗

Mx P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Mx Pi.

Show: Γk |=∗
Mx Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E or, depending on the system, D or
U. If Pk is a premise or an assumption, then as in the basis, Γk |=∗

Mx Pk.
So suppose Pk arises by one of the rules.

(R)

(⊃I) If Pk arises by ⊃I, then the picture is like this,
\A\

j /B/

k /A ⊃ B/

where j < k and Pk is /A ⊃ B/. By assumption, Γj |=∗
Mx

/B/; and by the
nature of access, Γj ⊆ Γk∪{\A\}; so by L6.1, Γk∪{\A\} |=∗

Mx
/B/. Suppose

Γk 6|=∗
Mx

/A ⊃ B/; then by VM*, there is some v and h such that h(Γk) =

1 but h(/A ⊃ B/) = 0; from the latter, by HM(⊃), h(\A\) = 1 and
h(/B/) = 0; so h(Γk) = 1 and h(\A\) = 1; so h(Γk ∪ {\A\}) = 1; so by
VM*, h(/B/) = 1. This is impossible; reject the assumption: Γk |=∗

Mx

/A ⊃ B/, which is to say, Γk |=∗
Mx Pk.

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i /A ⊃ B/

j \A\

k /B/
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where i, j < k and Pk is /B/. By assumption, Γi |=∗
Mx

/A ⊃ B/ and
Γj |=∗

Mx
\A\; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by

L6.1, Γk |=∗
Mx

/A ⊃ B/ and Γk |=∗
Mx

\A\. Suppose Γk 6|=∗
Mx

/B/; then by
VM*, there is some v and h such that h(Γk) = 1 but h(/B/) = 0; since
h(Γk) = 1, by VM*, h(/A ⊃ B/) = 1 and h(\A\) = 1; from the former,
by HM(⊃), h(\A\) = 0 or h(/B/) = 1; so h(/B/) = 1. This is impossible;
reject the assumption: Γk |=∗

Mx
/B/, which is to say, Γk |=∗

Mx Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,

/A/

i //B//

j \\¬B\\

k \¬A\

where i, j < k and Pk is \¬A\. By assumption, Γi |=∗
Mx

//B// and Γj |=∗
Mx

\\¬B\\; but by the nature of access, Γi ⊆ Γk ∪ {/A/} and Γj ⊆ Γk ∪ {/A/};
so by L6.1, Γk ∪ {/A/} |=∗

Mx
//B// and Γk ∪ {/A/} |=∗

Mx
\\¬B\\. Suppose

Γk 6|=∗
Mx

\¬A\; then by VM*, there is some v and h such that h(Γk) = 1

but h(\¬A\) = 0; from the latter, by HM(¬), h(/A/) = 1; so h(Γk) =

1 and h(/A/) = 1; so h(Γk ∪ {/A/}) = 1; so by VM*, h(//B//) = 1

and h(\\¬B\\) = 1; from the latter, by HM(¬), h(//B//) = 0. This is
impossible; reject the assumption: Γk |=∗

Mx
\¬A\, which is to say, Γk |=∗

Mx

Pk.

(¬E)

(∨I)

(∨E)

(D) If Pk arises by D, then the picture is like this,

i A

k A

where i < k and Pk is A. Where this rule is included in NMx, Mx has
condition exc, so no interpretation has v(p) = {1, 0}. By assumption,
Γi |=∗

Mx A; but by the nature of access, Γi ⊆ Γk; so by L6.1, Γk |=∗
Mx A.

Suppose Γk 6|=∗
Mx A; then by VM*, there is some v and h such that

h(Γk) = 1 but h(A) = 0; since h(Γk) = 1, by VM*, h(A) = 1. But for
these interpretations, for any A, if h(A) = 1 then h(A) = 1.
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Basis: A is a parameter p. Suppose h(A) = 1; then h(p) = 1; so by
HM(B), 1 ∈ v(p); so by exc, 0 6∈ v(p); so by HM(B), h(p) = 1; so
h(A) = 1.

Assp: For any i, 0 6 i < k, if A has i operators, and h(A) = 1, then
h(A) = 1.

Show: If A has k operators, and h(A) = 1, then h(A) = 1.
If A has k operators, then A is of the form, ¬P, P ∧ Q, P ∨ Q, or
P ⊃ Q, where P and Q have < k operators.

(¬) A is ¬P. Suppose h(A) = 1; then h(¬P) = 1; so by HM(¬),
h(P) = 0; so by assumption, h(P) = 0; so by HM(¬), h(¬P) = 1,
which is to say, h(A) = 1.

(∧) A is P ∧ Q. Suppose h(A) = 1; then h(P ∧ Q) = 1; so by HM(∧),
h(P) = 1 and h(Q) = 1; so by assumption, h(P) = 1 and h(Q) =

1; so by HM(∧), h(P ∧ Q) = 1, which is to say h(A) = 1.
(∨)
(⊃) A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so by

HM(⊃), h(P) = 0 or h(Q) = 1; so by assumption, h(P) = 0 or
h(Q) = 1; so by HM(⊃), h(P ⊃ Q) = 1, which is to say h(A) = 1.

———
For any A, if h(A) = 1, then h(A) = 1.
So, returning to the case for (D), h(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Mx A, which is to say, Γk |=∗
Mx Pk.

(U) If Pk arises by U, then the picture is like this,

i A

k A

where i < k and Pk is A. Where this rule is included in NMx, Mx
has condition exh, so no interpretation has v(p) = φ. By assumption,
Γi |=∗

Mx A; but by the nature of access, Γi ⊆ Γk; so by L6.1, Γk |=∗
Mx A.

Suppose Γk 6|=∗
Mx A; then by VM*, there is some v and h such that

h(Γk) = 1 but h(A) = 0; since h(Γk) = 1, by VM*, h(A) = 1. But for
these interpretations, for any A, if h(A) = 1 then h(A) = 1.

Basis: A is a parameter p. Suppose h(A) = 1; then h(p) = 1; so by
HM(B), 0 6∈ v(p); so by exh, 1 ∈ v(p); so by HM(B), h(p) = 1; so
h(A) = 1.

Assp: For any i, 0 6 i < k, if A has i operators, and h(A) = 1, then
h(A) = 1.

Show: If A has k operators, and h(A) = 1, then h(A) = 1.
If A has k operators, then A is of the form, ¬P, P ∧ Q, P ∨ Q, or
P ⊃ Q, where P and Q have < k operators.
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(¬) A is ¬P. Suppose h(A) = 1; then h(¬P) = 1; so by HM(¬),
h(P) = 0; so by assumption, h(P) = 0; so by HM(¬), h(¬P) = 1,
which is to say, h(A) = 1.

(∧) A is P ∧ Q. Suppose h(A) = 1; then h(P ∧ Q) = 1; so by HM(∧),
h(P) = 1 and h(Q) = 1; so by assumption, h(P) = 1 and h(Q) =

1; so by HM(∧), h(P ∧ Q) = 1, which is to say h(A) = 1.
(∨)
(⊃) A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so byHM(⊃),

h(P) = 0 or h(Q) = 1; so by assumption, h(P) = 0 or h(Q) = 1;
so by HM(⊃), h(P ⊃ Q) = 1, which is to say h(A) = 1.

———
For any A, if h(A) = 1, then h(A) = 1.
So, returning to the case for (U), h(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Mx A, which is to say, Γk |=∗
Mx Pk.

———
For any i, Γi |=∗

Mx Ai.

 6.2 NMx is complete: if Γ |=Mx A then Γ ǸMx A.

Suppose Γ |=Mx A; then Γ |=∗
Mx A; we show that Γ `∗NMx A. Again, this reduces

to the standard notion when there are no overlines. Fix on some particular
constraint(s) x. Then definitions of consistency etc. are relative to it.

C Γ is  iff there is noA such that Γ `∗NMx
/A/ and Γ `∗NMx

\¬A\.

L6.2 If Γ 6`∗NMx
\¬P\, then Γ ∪ {/P/} is consistent.

Suppose Γ 6`∗NMx
\¬P\ but Γ ∪ {/P/} is inconsistent. Then there is some

A such that Γ ∪ {/P/} `∗NMx
//A// and Γ ∪ {/P/} `∗NMx

\\¬A\\. But then we
can argue,

1 Γ

2 /P/ A (c, ¬I)

3 //A// from Γ ∪ {/P/}

4 \\¬A\\ from Γ ∪ {/P/}

5 \¬P\ 2-4 ¬I

So Γ `∗NMx
\¬P\. But this is impossible; reject the assumption: if Γ 6`∗NMx

\¬P\, then Γ ∪ {/P/} is consistent.

L6.3 There is an enumeration of all the formulas, P1,P2 . . .

Proof by construction. A simple approach is to order A1, A2 . . . in the
usual way, and let the final enumeration be, A1, A1, A2, A2 . . . .

M Γ is  iff for any A either Γ `∗NMx
/A/ or Γ `∗NMx

\¬A\.
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C(Γ ′) We construct a Γ ′ from Γ as follows. Set Ω0 = Γ . By L6.3, there is an
enumeration, P1,P2 . . . of all the formulas; for any Pi = /A/ in this
series set,

Ωi = Ωi−1 if Ωi−1 `∗NMx
\¬A\

Ωi = Ωi−1 ∪ {/A/} if Ωi−1 6`∗NMx
\¬A\

then
Γ ′ =

⋃
i>0 Ωi

L6.4 Γ ′ is maximal.
Suppose Γ ′ is not maximal. Then there is some Pi = /A/ such that
Γ ′ 6`∗NMx

/A/ and Γ ′ 6`∗NMx
\¬A\. For any i, each member of Ωi−1 is

in Γ ′; so if Ωi−1 `∗NMx
\¬A\ then Γ ′ `∗NMx

\¬A\; but Γ ′ 6`∗NMx
\¬A\; so

Ωi−1 6`∗NMx
\¬A\; so by construction,Ωi = Ωi−1∪{/A/}; so by construc-

tion, /A/ ∈ Γ ′; so Γ ′ `∗NMx
/A/. This is impossible; reject the assumption:

Γ ′ is maximal.

L6.5 If Γ is consistent, then each Ωi is consistent.
Suppose Γ is consistent.

Basis: Ω0 = Γ and Γ is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either Ωk−1 or Ωk−1 ∪ {/A/}. Suppose the former; by
assumption, Ωk−1 is consistent; so Ωk is consistent. Suppose
the latter; then by construction, Ωk−1 6`∗NMx

\¬A\; so by L6.2,
Ωk−1 ∪ {/A/} is consistent; so Ωk is consistent.

———
For any i, Ωi is consistent.

L6.6 If Γ is consistent, then Γ ′ is consistent.
Suppose Γ is consistent, but Γ ′ is not; from the latter, there is some P

such that Γ ′ `∗NMx
/P/ and Γ ′ `∗NMx

\¬P\. Consider derivations D1 and
D2 of these results and the premises of these derivations. Where Pi

is the last of these premises in the enumeration of formulas, by the
construction of Γ ′, each of the premises must be a member of Ωi; so
D1 and D2 are derivations from Ωi; so Ωi is not consistent. But since
Γ is consistent, by L6.5, Ωi is consistent. This is impossible; reject the
assumption: if Γ is consistent then Γ ′ is consistent.

C(v) We construct an interpretation v based on Γ ′ as follows. For any para-
meter p, set 1 ∈ v(p) iff Γ ′ `∗NMx p, and 0 ∈ v(p) iff Γ ′ 6`∗NMx p.

L6.7 If Γ is consistent then for any A, h(/A/) = 1 iff Γ ′ `∗NMx
/A/.

Suppose Γ is consistent. By L6.4, Γ ′ is maximal; by L6.6, Γ ′ is consist-
ent. Now by induction on the number of operators in A,
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Basis: If A has no operators, then it is a parameter p or p. By construc-
tion, Γ ′ `∗NMx p iff 1 ∈ v(p); by HM(B), iff h(p) = 1. Similarly,
by construction, Γ ′ 6`∗NMx p iff 0 ∈ v(p); by HM(B), iff h(p) 6= 1.
So h(/p/) = 1 iff Γ ′ `∗NMx

/p/, which is to say, h(/A/) = 1 iff
Γ ′ `∗NMx

/A/.
Assp: For any i, 0 6 i < k, if A has i operators, then h(/A/) = 1 iff

Γ ′ `∗NMx
/A/.

Show: If A has k operators, then h(/A/) = 1 iff Γ ′ `∗NMx
/A/.

If A has k operators, then it is of the form ¬P, P ∧ Q, P ∨ Q or
P ⊃ Q where P and Q have < k operators.

(¬) A is ¬P. (i) Suppose h(/A/) = 1; then h(/¬P/) = 1; so by
HM(¬), h(\P\) = 0; so by assumption, Γ ′ 6`∗NMx

\P\; so by maxi-
mality, Γ ′ `∗NMx

/¬P/, where this is to say, Γ ′ `∗NMx
/A/. (ii) Suppose

Γ ′ `∗NMx
/A/; then Γ ′ `∗NMx

/¬P/; so by consistency, Γ ′ 6`∗NMx
\P\; so

by assumption, h(\P\) = 0; so by HM(¬), h(/¬P/) = 1, where
this is to say, h(/A/) = 1. So h(/A/) = 1 iff Γ ′ `∗NMx

/A/.
(∧)
(∨)
(⊃) A is P ⊃ Q. (i) Suppose h(/A/) = 1 but Γ ′ 6`∗NMx

/A/; then
h(/P ⊃ Q/) = 1 but Γ ′ 6`∗NMx

/P ⊃ Q/. From the latter, by maxi-
mality, Γ ′ `∗NMx

\¬(P ⊃ Q)\; from this it follows, by the following
derivations,

1 \¬(P ⊃ Q)\ P

2 /¬P/ A (c, ¬E)

3 \P\ A (g, ⊃I)

4 \¬Q\ A (c, ¬E)

5 \P\ 3 R
6 /¬P/ 2 R
7 /Q/ 4-6 ¬E
8 /P ⊃ Q/ 3-7 ⊃I
9 \¬(P ⊃ Q)\ 1 R
10 \P\ 2-9 ¬E

1 \¬(P ⊃ Q)\ P

2 /Q/ A (c, ¬I)

3 \P\ A (g, ⊃I)

4 /Q/ 2 R
5 /P ⊃ Q/ 3-4 ⊃I
6 \¬(P ⊃ Q)\ 1 R
7 \¬Q\ 2-6 ¬I

that Γ ′ `∗NMx
\P\ and Γ ′ `∗NMx

\¬Q\; so by consistency, Γ ′ 6`∗NMx
/Q/;

so by assumption, h(\P\) = 1 and h(/Q/) = 0; so by HM(⊃),
h(/P ⊃ Q/) = 0. This is impossible; reject the assumption: if
h(/A/) = 1 then Γ ′ `∗NMx

/A/.
(ii) Suppose Γ ′ `∗NMx

/A/ but h(/A/) = 0; then Γ ′ `∗NMx
/P ⊃ Q/

but h(/P ⊃ Q/) = 0. From the latter, by HM(⊃), h(\P\) = 1

and h(/Q/) = 0; so by assumption, Γ ′ `∗NMx
\P\ and Γ ′ 6`∗NMx

/Q/;
but since Γ ′ `∗NMx

/P ⊃ Q/ and Γ ′ `∗NMx
\P\, by (⊃E), Γ ′ `∗NMx

/Q/.
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This is impossible; reject the assumption: if Γ ′ `∗NMx
/A/, then

h(/A/) = 1. So h(/A/) = 1 iff Γ ′ `∗NMx
/A/.

———
For any A, h(/A/) = 1 iff Γ ′ `∗NMx

/A/.

L6.8 If Γ is consistent, then v constructed as above is anMx interpretation.
For this, we need to show that the relevant constraints are met. Suppose
Γ is consistent; by L6.4, Γ ′ is maximal; by L6.6, Γ ′ is consistent.

(exc) For systemsMCL andMK3 with v(p) 6= {1, 0}, (D) is in NKx. Sup-
pose v(p) = {1, 0}; then 1 ∈ v(p) and 0 ∈ v(p); so by construc-
tion, Γ ′ `∗NMx p and Γ ′ 6`∗NMx p; from the latter, by maximality,
Γ ′ `∗NMx ¬p; so by (D), Γ ′ `∗NMx ¬p; so Γ ′ is inconsistent. This is
impossible; reject the assumption: v(p) 6= {1, 0}.

(exh) For systemsMCL andMLP with v(p) 6= φ, (U) is inNKx. Suppose
v(p) = φ; then 1 6∈ v(p) and 0 6∈ v(p); so by construction, Γ ′ 6`∗NMx

p and Γ ′ `∗NMx p; from the former, by maximality, Γ ′ `∗NMx ¬p; so
by (U), Γ ′ `∗NMx ¬p; so Γ ′ is inconsistent. This is impossible; reject
the assumption: v(p) 6= φ.

L6.9 If Γ is consistent, then h(Γ) = 1.
Suppose Γ is consistent and /A/ ∈ Γ ; then by construction, /A/ ∈ Γ ′; so
Γ ′ `∗NMx

/A/; so since Γ is consistent, by L6.7, h(/A/) = 1. And similarly
for any /A/ ∈ Γ . So h(Γ) = 1.

Main result: Suppose Γ |=Mx A but Γ 6 ǸMx A. Then Γ |=∗
Mx A but Γ 6`∗NMx A.

By (DN), if Γ `∗NMx ¬¬A, then Γ `∗NMx A; so Γ 6`∗NMx ¬¬A; so by L6.2, Γ ∪
{¬A} is consistent; so by L6.8 and L6.9, there is an Mx interpretation v with
corresponding h constructed as above such that h(Γ ∪ {¬A}) = 1; so h(¬A) = 1;
so by HM(¬), h(A) = 0; so h(Γ) = 1 and h(A) = 0; so by VM*, Γ 6|=∗

Mx A. This
is impossible; reject the assumption: if Γ |=Mx A, then Γ ǸMx A.

7   : υX (. 9)
7.1  /  
This section is developed directly in terms introduced for “expanded” notions
of validity in demonstration of soundness and completeness in section 6. Apart
from that discussion, the notions should be roughly familiar from derivations
in that section.

LυX The  consists of propositional parameters p0, p1 . . . with
the operators, ¬, ∧, ∨, and→. Each propositional parameter is a -
; ifA and B are formulas, so are ¬A, (A∧B), (A∨B), and (A → B).
A ⊃ B abbreviates ¬A ∨ B, and A ≡ B abbreviates (A ⊃ B) ∧ (B ⊃ A).
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This time, from the start, for any formula A, we allow A and A, where
as before /A/ and \A\ (//A// and \\A\\) represent one or the other (and
similarly for N and N immediately below).

IυX An  is 〈W,N,N, h〉 where W is a set of worlds, and
N,N ⊆ W are normal worlds for truth and non-falsity respectively; h

is a function such that for any w ∈ W, hw(/p/) = 1 or hw(/p/) = 0,
and for any w not in /N/, hw(/A → B/) = 1 or hw(/A → B/) = 0.
So h makes assignments directly to experssions of the sort /A → B/ at
worlds not in /N/. Say /A/ holds at w if hw(/A/) = 1 and otherwise
fails. Interpretations may also be subject to the constraints,

K N = N = W

4 N = N

The K systems are subject to constraint (K), the 4 systems to (4). Of
course, (K) implies (4); so it is enough that interpretations for υK4 and
υK∗ are subject to (K); υN4 is subject to (4), and υN∗ to neither. With
restriction K, h reduces to a simple assignment to parameters at worlds.

Hυ For expressions not assigned a value directly,

(¬) hw(/¬A/) = 1 if hw(\A\) = 0, and 0 otherwise.
(∧) hw(/A ∧ B/) = 1 if hw(/A/) = 1 and hw(/B/) = 1, and 0 other-

wise.
(∨) hw(/A ∨ B/) = 1 if hw(/A/) = 1 or hw(/B/) = 1, and 0 other-

wise.
(→)4 For w ∈ /N/, hw(/A → B/) = 1 iff there is no x ∈ W such that

hx(A) = 1 and hx(/B/) = 0.
(→)∗ For w ∈ /N/, hw(/A → B/) = 1 iff there is no x ∈ W such that

hx(//A//) = 1 and hx(//B//) = 0.

The 4-systems υN4 and υK4 take Hυ(→)4; the star systems υN∗ and υK∗ take
Hυ(→)∗. Where Γ does not include formulas with overlines, hw(Γ) = 1 iff
hw(A) = 1 for each A ∈ Γ ; then,

VυX Γ |=υX A iff there is no υX interpretation 〈W,N,N, h〉 and w ∈ N such
that hw(Γ) = 1 and hw(A) = 0.

As in the previous section, the single account is meant to accommodate dif-
ferent presentations in Priest, and help exhibit their differences. In particular,
as for the previous section, given constraint (4), an interpretation 〈W,N,N, h〉
corresponds to a relational 〈W,N, ρ〉, where hw(A) = 1 iff A bears relation
ρ (which, as in the previous section, may be set membership) to 1 at w, and
hw(A) = 1 iff A does not bear ρ to 0 at w. And an interpretation 〈W,N,N, h〉
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corresponds to a star interpretation 〈W,N, ∗, v〉where hw(A) = 1 iff vw(A) = 1

and hw(A) = 1 iff vw∗(A) = 1.6

7.2  : NυX

Allow expressions with both integer subscripts and overlines. I- and E- rules
for ¬, ∧, ∨, ⊃ and ≡ are a natural combination of rules for NKυ and NFDE,
with rules for ⊃ and ≡ now derived.

R /P/s

/P/s

¬I /P/s

//Q//t

\\¬Q\\t

\¬P\s

¬E /¬P/s

//Q//t

\\¬Q\\t

\P\s

∧I /P/s

/Q/s

/P ∧ Q/s

∧E /P ∧ Q/s

/P/s

∧E /P ∧ Q/s

/Q/s

∨I /P/s

/P ∨ Q/s

∨I /P/s

/Q ∨ P/s

⊃I /P/s

\Q\s

\P ⊃ Q\s

⊃E \P ⊃ Q\s

/P/s

\Q\s

∨E /P ∨ Q/s

/P/s

//R//t

/Q/s

//R//t

//R//t

≡I /P/s

\Q\s

/Q/s

\P\s

\P ≡ Q\s

≡E \P ≡ Q\s

/P/s

\Q\s

≡E \P ≡ Q\s

/Q/s

\P\s

The different derivation systems of this section add to these from,
6For the latter, given a star interpretation 〈W,N, ∗, v〉 consider an υX∗ interpretation

〈W′,N′,N
′
, h〉 with a w′ ∈ W′ corresponding to each w ∈ W. And for an υX∗ interpretation

〈W′,N′,N
′
, h〉 consider a star interpretation 〈W,N, ∗, v〉 with a w and w∗ ∈ W corresponding to

each w′ ∈ W′. Then set x′ ∈ N′ iff x ∈ N; x′ ∈ N
′ iff x∗ ∈ N; hx′(p) = 1 iff vx(p) = 1; hx′(p) = 1

iff vx∗ (p) = 1; for x′ 6∈ N′, hx′(P → Q) = 1 iff vx(P → Q) = 1; and for x′ 6∈ N
′, hx′(P → Q) = 1

iff vx∗ (P → Q) = 1. Then the result follows by a simple induction (for a related demonstration,
see the proof of L7.0 below).
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→I4 Pt

/Q/t

/P → Q/s

where t does not appear in any
undischarged premise or assump-
tion

→E4 /P → Q/s

Pt

/Q/t

→I* //P//t

//Q//t

/P → Q/s

where t does not appear in any
undischarged premise or assump-
tion

→E* /P → Q/s

//P//t

//Q//t

For the star-rules, //P//t and //Q//t may be either Pt and Qt, or Pt and Qt.
Consider a constraint (n) which requires that s = 0 for application of→I and
→E, and a stronger constraint (s) which requires that /P → Q/s for these rules
is of the sort (P → Q)0 with subscript 0 and without overline. Then,

NυK4 adds→I4 and→E4

NυN4 adds→I4 and→E4 with constraint (n)

NυK∗ adds→I* and→E*
NυN∗ adds→I* and→E* with constraint (s)

In these systems, every subscript is 0, appears in a premise, or appears in the
t-place of an accessible assumption for→I.Where the members of Γ andA are
without overlines or subscripts, let Γ0 be the members of Γ , each with subscript
0. Then,

NυX Γ ǸυX A iff there is an NυX derivation of A0 from Γ0.
Derived rules are as one would expect. Two-way derived rules carry over

from CL with overlines and subscripts constant throughout. Thus, e.g.,
Impl /P ⊃ Q/s / . /¬P ∨ Q/s

/¬P ⊃ Q/s / . /P ∨ Q/s

MT, NB and DS appear in the forms,

MT /P ⊃ Q/s

\¬Q\s

/¬P/s

NB /P ≡ Q/s /P ≡ Q/s

\¬P\s \¬Q\s

/¬Q/s /¬P/s

DS /P ∨ Q/s /P ∨ Q/s

\¬P\s \¬Q\s

/Q/s /P/s

As examples, here are a few cases where the logics do not all have the same
results.

P → Q ǸυX∗ ¬Q → ¬P

1 (P → Q)0 P

2 ¬Q1 A (g,→I*)

3 P1 A (c, ¬I)

4 Q1 1,3→E*
5 ¬Q1 2 R
6 ¬P1 3-5 ¬I
7 (¬Q → ¬P)0 2-6→I*
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This derivation satisfies constraints (n) and (s), but does not go through in the
4-systems insofar as there is no “purchase” for application of→E4 with (1) and
only P1, rather than P1, at (3).

P ∧ ¬Q ǸυX4
¬(P → Q)

1 (P ∧ ¬Q)0 P

2 (P → Q)0 A (c, ¬I)

3 P0 1 ∧E
4 Q0 2,3→E4
5 ¬Q0 1 ∧E
6 ¬(P → Q)0 2-5 ¬I

This derivation satisfies constraint (n), though not (s). It is blocked in either
star system insofar as the contradiction does not arise; by →E*, we might get
Q0 at (4), but this does not contradict ¬Q0 for ¬I.

ǸυKx
[(P → Q) ∧ (Q → R)] → (P → R)

1 [(P → Q) ∧ (Q → R)]1 A (g,→Ix)

2 P2 A (g,→Ix)

3 (P → Q)1 1 ∧E
4 Q2 2,3→Ex
5 (Q → R)1 1 ∧E
6 R2 4,5→Ex
7 (P → R)1 2-6→Ix
8 ([(P → Q) ∧ (Q → R)] → (P → R))0 1-7→Ix

This derivation works with either the star- or 4-rules. But it fails constraints
(n) and (s) insofar as s = 1 for lines (4), (6) and (7).

7.3   
Preliminaries: Begin with generalized notions of validity. Given any model
〈W,N,N, h〉, let m be a map from subscripts into W such that m(0) is some
member of N. Then say 〈W,N,N, h〉m is 〈W,N,N, h〉 with map m. Then,
where Γ is a set of expressions of our language for derivations, hm(Γ) = 1 iff for
each /As/ ∈ Γ , hm(s)(/A/) = 1. Now expand notions of validity for subscripts
and overlines as follows,

VυX* Γ |=∗
υX

/A/s iff there is no υX interpretation 〈W,N,N, h〉m such that
hm(Γ) = 1 but hm(s)(/A/) = 0.

NυX* Γ `∗NυX
/A/s iff there is anNυX derivation of /A/s from the members of

Γ .

These notions reduce to the standard ones when all the members of Γ and A

are without overlines and have subscript 0. As usual, for the following, cases
omitted are like ones worked, and so left to the reader.
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 7.1 NυX is sound: If Γ ǸυX A then Γ |=υX A.

For the (→)∗ case, it will be useful to have a further preliminary.

L7.0 For an interpretation 〈W,N,N, h〉, consider 〈W′,N′,N
′
, h′〉 such that

corresponding to each w ∈ W there are w′, w∗ ∈ W′ where, (i) w′ ∈
/N′/ iff w ∈ /N/, and w∗ ∈ /N′/ iff w ∈ \N\; (ii) h′w′(/p/) = 1 iff
hw(/p/) = 1, and h′w∗(/p/) = 1 iff hw(\p\) = 1; (iii) for w′ 6∈ /N′/,
h′w′(/P → Q/) = 1 iff hw(/P → Q/) = 1, and for w∗ 6∈ /N′/, h′w∗(/P →
Q/) = 1 iff hw(\P → Q\) = 1. Then,
For the star systems and interpretations as above, for any /A/, we have
(i) h′w′(/A/) = 1 iff hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.

Basis: /A/ is an atomic /p/. (i) By construction, h′w′(/p/) = 1 iff
hw(/p/) = 1; so h′w′(/A/) = 1 iff hw(/A/) = 1. Similarly, (ii)
by construction, h′w∗(/p/) = 1 iff hw(\p\) = 1; so h′w∗(/A/) = 1

iff hw(\A\) = 1.
Assp: For any i, 0 6 i < k, if /A/ has i operators, (i) h′w′(/A/) = 1 iff

hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.
Show: If /A/ has k operators, then (i) h′w′(/A/) = 1 iff hw(/A/) = 1 and

(ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.
If /A/ has k operators, then it is of the form, /¬P/, /P ∧ Q/,
/P ∨ Q/, or /P → Q/, where P and Q have < k operators.

(¬) /A/ is /¬P/. (i) h′w′(/A/) = 1 iff h′w′(/¬P/) = 1; by Hυ(¬),
iff h′w′(\P\) = 0; by assumption iff hw(\P\) = 0; by Hυ(¬),
iff hw(/¬P/) = 1; iff hw(/A/) = 1. (ii) (i) h′w∗(/A/) = 1 iff
h′w∗(/¬P/) = 1; by Hυ(¬), iff h′w∗(\P\) = 0; by assumption iff
hw(/P/) = 0; by Hυ(¬), iff hw(\¬P\) = 1; iff hw(\A\) = 1.

(∧) /A/ is /P ∧ Q/. (i) h′w′(/A/) = 1 iff h′w′(/P ∧ Q/) = 1; by
Hυ(∧), iff h′w′(/P/) = 1 and h′w′(/Q/) = 1; by assumption, iff
hw(/P/) = 1 and hw(/Q/) = 1; by Hυ(∧), iff hw(/P ∧ Q/) = 1;
iff hw(/A/) = 1. (ii) h′w∗(/A/) = 1 iff h′w∗(/P ∧ Q/) = 1; by
Hυ(∧), iff h′w∗(/P/) = 1 and h′w∗(/Q/) = 1; by assumption, iff
hw(\P\) = 1 and hw(\Q\) = 1; by Hυ(∧), iff hw(\P ∧ Q\) = 1;
iff hw(\A\) = 1.

(∨)
(→) A is /P → Q/. (i) Suppose w′ 6∈ /N′/; then by construction,

h′w′(/P → Q/) = 1 iff hw(/P → Q/) = 1; so h′w′(/A/) = 1

iff hw(/A/) = 1. So suppose w′ ∈ /N′/; then by construction,
w ∈ /N/. h′w′(/A/) = 0 iff h′w′(/A → B/) = 0; since w′ ∈ /N′/,
by Hυ(→)∗ iff either there is an x′ ∈ W′ such that h′x′(//P//) = 1

and h′x′(//Q//) = 0, or there is a y∗ ∈ W′ such that h′y∗(//P//) = 1

and h′y∗(//Q//) = 0; by assumption, iff either hx(//P//) = 1 and
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hx(//Q//) = 0, or hy(\\P\\) = 1 and hy(\\Q\\) = 0; given either
of these, since w ∈ /N/, by Hυ(→)∗, iff hw(/P → Q/) = 0; iff
hw(/A/) = 0.
(ii) Supposew∗ 6∈ /N′/; then by construction, h′w∗(/P → Q/) = 1

iff hw(\P → Q\) = 1; so h′w∗(/A/) = 1 iff hw(\A\) = 1. So
suppose w∗ ∈ /N′/; then w ∈ \N\. h′w∗(/A/) = 0 iff h′w∗(/A →
B/) = 0; since w∗ ∈ /N′/, by Hυ(→)∗ iff either there is an x′ ∈
W′ such that h′x′(//P//) = 1 and h′x′(//Q//) = 0, or there is a y∗ ∈
W′ such that h′y∗(//P//) = 1 and h′y∗(//Q//) = 0; by assumption,
iff either hx(//P//) = 1 and hx(//Q//) = 0, or hy(\\P\\) = 1 and
hy(\\Q\\) = 0; given either of these, since w ∈ \N\, by Hυ(→)∗,
iff hw(\P → Q\) = 0; iff hw(\A\) = 0.

———
For any A, (i) h′w′(/A/) = 1 iff hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff
hw(\A\) = 1.

L7.1 If Γ ⊆ Γ ′ and Γ |=∗
υX

/P/s then Γ ′ |=∗
υX

/P/s.
Suppose Γ ⊆ Γ ′ and Γ |=∗

υX
/P/s, but Γ ′ 6|=∗

υX
/P/s. From the latter, by

VυX*, there is some υX interpretation 〈W,N,N, h〉m such that hm(Γ ′) =

1 but hm(s)(/P/) = 0. But since hm(Γ ′) = 1 and Γ ⊆ Γ ′, hm(Γ) = 1;
so hm(Γ) = 1 but hm(s)(/P/) = 0; so by VυX*, Γ 6|=∗

υX
/P/s. This

is impossible; reject the assumption: if Γ ⊆ Γ ′ and Γ |=∗
υX

/P/s, then
Γ ′ |=∗

υX
/P/s.

Main result: For each line in a derivation let Pi be the expression on line i and Γi

be the set of all premises and assumptions whose scope includes line i. We set
out to show “generalized” soundness: if Γ `∗NυX P then Γ |=∗

υX P. As above, this
reduces to the standard result when P and all the members of Γ are without
overlines and have subscript 0. Suppose Γ `∗NυX P. Then there is a derivation of
P from premises in Γ where P appears under the scope of the premises alone.
By induction on line number of this derivation, we show that for each line i of
this derivation, Γi |=∗

υX Pi. The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumption /A/s. Then Γ1 = {/A/s}; it follows
that for any 〈W,N,N, h〉m, hm(Γ1) = 1 iff hm(s)(/A/) = 1; so there
is no 〈W,N,N, h〉m such that hm(Γ1) = 1 but hm(s)(/A/) = 0. So by
VυX*, Γ1 |=∗

υX
/A/s, where this is just to say, Γ1 |=∗

υX P1.

Assp: For any i, 1 6 i < k, Γi |=∗
υX Pi.

Show: Γk |=∗
υX Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E or, depending on the system, →I4, →E4,
→I*, or→E*. If Pk is a premise or an assumption, then as in the basis,
Γk |=∗

υX Pk. So suppose Pk arises by one of the rules.
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(R)

(∧I)

(∧E)

(∨I)

(∨E)

(¬I) If Pk arises by ¬I, then the picture is like this,

/A/s

i //B//t

j \\¬B\\t

k \¬A\s

where i, j < k and Pk is \¬A\s. By assumption, Γi |=∗
υX

//B//t and
Γj |=∗

υX
\\¬B\\t; but by the nature of access, Γi ⊆ Γk ∪ {/A/s} and Γj ⊆

Γk ∪ {/A/s}; so by L7.1, Γk ∪ {/A/s} |=∗
υX

//B//t and Γk ∪ {/A/s} |=∗
υX

\\¬B\\t. Suppose Γk 6|=∗
υX

\¬A\s; then by VυX*, there is an υX inter-
pretation 〈W,N,N, h〉m such that hm(Γk) = 1 but hm(s)(\¬A\) = 0;
so by Hυ(¬), hm(s)(/A/) = 1; so hm(Γk) = 1 and hm(s)(/A/) = 1; so
hm(Γk ∪ {/A/s}) = 1; so by VυX*, hm(t)(//B//) = 1 and hm(t)(\\¬B\\) =

1; from the latter, by Hυ(¬), hm(t)(//B//) = 0. This is impossible; reject
the assumption: Γk |=∗

υX
\¬A\s, which is to say, Γk |=∗

υX Pk.

(¬E)

(→I4) If Pk arises by→I4, then the picture is like this,

At

i /B/t

k /A → B/s

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is /A → B/s. For these systems, either
by condition K, W = N = N or by constraint (n), s = 0; in the first
case, m(s) ∈ N and m(s) ∈ N; so m(s) ∈ /N/; in the other case, by
the construction of m, m(s) ∈ N; so with N = N by condition (4),
m(s) ∈ N; so m(s) ∈ /N/; in either case, m(s) ∈ /N/. By assumption,
Γi |=∗

υX
/B/t; but by the nature of access, Γi ⊆ Γk ∪ {At}; so by L7.1,

Γk∪ {At} |=∗
υX

/B/t. Suppose Γk 6|=∗
υX

/A → B/s; then by VυX*, there is an
υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but hm(s)(/A →
B/) = 0; so, since m(s) ∈ /N/, by Hυ(→)4, there is some w ∈ W

such that hw(A) = 1 and hw(/B/) = 0. Now consider a map m′ like
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m except that m′(t) = w, and consider 〈W,N,N, h〉m′ ; since t does
not appear in Γk, it remains that hm′(Γk) = 1; and since m′(t) = w,
hm′(t)(A) = 1; so hm′(Γk ∪ {At}) = 1; so by VυX*, hm′(t)(/B/) = 1. But
m′(t) = w; so hw(/B/) = 1. This is impossible; reject the assumption:
Γk |=∗

υX
/A → B/s, which is to say, Γk |=∗

υX Pk.

(→E4) If Pk arises by→E4, then the picture is like this,

i /A → B/s

j At

k /B/t

where i, j < k and Pk is /B/t. For these systems, either by condition
K, W = N = N or by constraint (n), s = 0; in the first case, m(s) ∈ N

and m(s) ∈ N; so m(s) ∈ /N/; in the other case, by the construction
of m, m(s) ∈ N; so with N = N by condition (4), m(s) ∈ N; so m(s) ∈
/N/; in either case, m(s) ∈ /N/. By assumption, Γi |=∗

υX
/A → B/s and

Γj |=∗
υX At; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L7.1,

Γk |=∗
υX

/A → B/s and Γk |=∗
υX At. Suppose Γk 6|=∗

υX
/B/t; then by VυX*,

there is some υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but
hm(t)(/B/) = 0; since hm(Γk) = 1, by VυX*, hm(s)(/A → B/) = 1 and
hm(t)(A) = 1; from the first of these, since m(s) ∈ /N/, by Hυ(→)4,
there is no w ∈ W such that hw(A) = 1 and hw(/B/) = 0; so it is not
the case that hm(t)(A) = 1 and hm(t)(/B/) = 0. This is impossible;
reject the assumption: Γk |=∗

υX
/B/t, which is to say, Γk |=∗

υX Pk.

(→I*) If Pk arises by→I*, then the picture is like this,

//A//t

i //B//t

k /A → B/s

where i < k, t does not appear in any member of Γk (in any undischarged
premise or assumption), and Pk is /A → B/s. For these systems, either
by condition K,W = N = N or by constraint (s), /A → B/s is of the sort,
(A → B)0; in the first case, m(s) ∈ N and m(s) ∈ N; so m(s) ∈ /N/;
in the other case, s = 0; so by the construction of m, m(s) ∈ N, which
is to say m(s) ∈ /N/; so in either case, m(s) ∈ /N/. By assumption,
Γi |=∗

υX
//B//t; but by the nature of access, Γi ⊆ Γk ∪ {//A//t}; so by L7.1,

Γk ∪ {//A//t} |=∗
υX

//B//t. Suppose Γk 6|=∗
υX

/A → B/s; then by VυX*,
there is an υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but
hm(s)(/A → B/) = 0; so by Hυ(→)∗, there is some x ∈ W such that
hx(A) = 1 and hx(B) = 0, or hx(A) = 1 and hx(B) = 0. Without loss
of generality, suppose hx(A) = 1 and hx(B) = 0; then by L7.0, there is
an interpretation 〈W′,N′,N

′
, h′〉 where h′w′(/P/) = 1 iff hw(/P/) = 1
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and h′w∗(/P/) = 1 iff hw(\P\) = 1. So with m(s) = w iff m′(s) = w′,
it remains that h′m′(Γk) = 1; and we have that x′, x∗ ∈ W′ are such that
h′x′(A) = 1 and h′x′(B) = 0, and h′x∗(A) = 1 and h′x∗(B) = 0; one of these
is a y such that h′y(//A//) = 1 and h′y(//B//) = 0. Now consider a map
n like m′ except that n(t) = y, and consider 〈W′,N′,N

′
, h′〉n; since t

does not appear in Γk, it remains that h′n(Γk) = 1; and since n(t) = y,
h′n(t)(

//A//) = 1; so h′n(Γk ∪ {//A//t}) = 1; so by VυX*, h′n(t)(
//B//) = 1.

But n(t) = y; so h′y(//B//) = 1. This is impossible; reject the assump-
tion: Γk |=∗

υX
/A → B/s, which is to say, Γk |=∗

υX Pk.

(→E*) If Pk arises by→E*, then the picture is like this,

i /A → B/s

j //A//t

k //B//t

where i, j < k and Pk is //B//t. For these systems, either by condition
K,W = N = N or by constraint (s), /A → B/s is of the sort, (A → B)0;
in the first case, m(s) ∈ N and m(s) ∈ N; so m(s) ∈ /N/; in the other
case, s = 0; so by the construction of m, m(s) ∈ N, which is to say
m(s) ∈ /N/; so in either case, m(s) ∈ /N/. By assumption, Γi |=∗

υX

/A → B/s and Γj |=∗
υX

//A//t; but by the nature of access, Γi ⊆ Γk and
Γj ⊆ Γk; so by L7.1, Γk |=∗

υX
/A → B/s and Γk |=∗

υX
//A//t. Suppose Γk 6|=∗

υX

//B//t; then by VυX*, there is some υX interpretation 〈W,N,N, h〉m
such that hm(Γk) = 1 but hm(t)(//B//) = 0; since hm(Γk) = 1, by VυX*,
hm(s)(/A → B/) = 1 and hm(t)(//A//) = 1; from the first of these, since
m(s) ∈ /N/, by Hυ(→)∗, there is no w ∈ W such that hw(//A//) =

1 and hw(//B//) = 0; so it is not the case that hm(t)(//A//) = 1 and
hm(t)(//B//) = 0. This is impossible; reject the assumption: Γk |=∗

υX

//B//t, which is to say, Γk |=∗
υX Pk.

———
For any i, Γi |=∗

υX Pi.

 7.2 NυX is complete: if Γ |=υX A then Γ ǸυX A.

Suppose Γ |=υX A; then Γ0 |=∗
υX A0; we show that Γ0 `∗NυX A0. As usual, this

reduces to the standard notion. For the following, fix on some particular υX.
Then definitions of consistency etc. are relative to it.

C Γ is  iff there is no As such that Γ `∗NυX
/A/s and Γ `∗NυX

\¬A\s.

L7.2 If s is 0 or appears in Γ , and Γ 6`∗NυX
\¬P\s, then Γ ∪ {/P/s} is consistent.
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Suppose s is 0 or appears in Γ and Γ 6`∗NυX
\¬P\s but Γ ∪ {/P/s} is in-

consistent. Then there is some At such that Γ ∪ {/P/s} `∗NυX
//A//t and

Γ ∪ {/P/s} `∗NυX
\\¬A\\t. But then we can argue,

1 Γ

2 /P/s A (c, ¬I)

3 //A//t from Γ ∪ {/P/s}

4 \\¬A\\t from Γ ∪ {/P/s}

5 \¬P\s 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in Γ ;
so Γ `∗NυX

\¬P\s. But this is impossible; reject the assumption: if s is 0

or appears in Γ and Γ 6`∗NυX
\¬P\s, then Γ ∪ {/P/s} is consistent.

L7.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as usual.

M Γ is  - iff for any As either Γ `∗NυX
/A/s or Γ `∗NυX

\¬A\s.

S Γ is a  set for (→)K4
iff for every formula of the form ¬(A →

B), if Γ `∗NυK4
/¬(A → B)/s then there is some t such that Γ `∗NυK4

At and
Γ `∗NυK4

/¬B/t.
Γ is a  set for (→)N4

iff for every formula of the form ¬(A →
B), if Γ `∗NυK4

/¬(A → B)/0 then there is some t such that Γ `∗NυK4
At and

Γ `∗NυK4
/¬B/t.

Γ is a  set for (→)K∗ iff for every formula of the form ¬(A →
B), if Γ `∗NυK∗

/¬(A → B)/s then there is some t such that Γ `∗NυK∗ At and
Γ `∗NυK∗ ¬Bt.
Γ is a  set for (→)N∗ iff for every formula of the form ¬(A →
B), if Γ `∗NυK∗ ¬(A → B)0 then there is some t such that Γ `∗NυK∗ At and
Γ `∗NυK∗ ¬Bt.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L7.3, there is an enumeration,
P1,P2 . . . of all the formulas; let E0 be this enumeration. Then for the
first /A/s in Ei−1 such that s is 0 or included in Ωi−1, let Ei be like
Ei−1 but without /A/s, and set,

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 136

Ωi = Ωi−1 if Ωi−1 `∗NυX
\¬A\s

Ωi∗ = Ωi−1 ∪ {/A/s} if Ωi−1 6`∗NυX
\¬A\s

and
υK4: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/s

Ωi = Ωi∗ ∪ {Pt, /¬Q/t} if As is of the form /¬(P → Q)/s

υN4: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/0

Ωi = Ωi∗ ∪ {Pt, /¬Q/t} if As is of the form /¬(P → Q)/0

υK∗: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/s

Ωi = Ωi∗ ∪ {Pt,¬Qt} if As is of the form /¬(P → Q)/s

υN∗: Ωi = Ωi∗ if As is not of the form ¬(P → Q)0

Ωi = Ωi∗ ∪ {Pt,¬Qt} if As is of the form ¬(P → Q)0

-where t is the first subscript not included in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar as
there are infinitely many subscripts, and at any stage only finitely many
formulas are added – the only subscripts in the initial Ω0 being 0. Sup-
pose s appears in Γ ′; then there is some Ωi in which it is first appears;
and any formula Pj in the original enumeration that has subscript s is
sure to be “considered” for inclusion at a subsequent stage.

L7.4 For any s included in Γ ′, Γ ′ is s-maximal.
Suppose s is included in Γ ′ but Γ ′ is not s-maximal. Then there is some
As such that Γ ′ 6`∗NυX

/A/s and Γ ′ 6`∗NυX
\¬A\s. For any i, each member

of Ωi−1 is in Γ ′; so if Ωi−1 `∗NυX
\¬A\s then Γ ′ `∗NυX

\¬A\s; but Γ ′ 6`∗NυX

\¬A\s; so Ωi−1 6`∗NυX
\¬A\s; so since s is included in Γ ′, there is a stage

in the construction that sets Ωi∗ = Ωi−1 ∪ {/A/s}; so by construction,
/A/s ∈ Γ ′; so Γ ′ `∗NυX

/A/s. This is impossible; reject the assumption: Γ ′
is s-maximal.

L7.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {/A/s}, (iii) Ωk∗ ∪
{Pt, /¬Q/t} in υK4 or υN4, or (iv)Ωk∗ ∪ {Pt,¬Qt} in υK∗ or υN∗.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) SupposeΩk isΩk∗ = Ωk−1 ∪ {/A/s}. Then by construction, s is

0 or inΩk−1 andΩk−1 6`∗NυX
\¬A\s; so by L7.2,Ωk−1 ∪ {/A/s} is

consistent; so Ωk is consistent.
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(iii) Suppose Ωk is Ωk∗ ∪ {Pt, /¬Q/t} in υK4 or υN4. In this case, as
above, Ωk∗ is consistent and by construction, /¬(P → Q)/s ∈
Ωk∗ (in υN4, with s = 0). Suppose Ωk is inconsistent. Then
there is some Au such that Ωk∗ ∪ {Pt, /¬Q/t} `∗NυX

//A//u and
Ωk∗ ∪ {Pt, /¬Q/t} `∗NυX

\\¬A\\u. So reason as follows,

1 Ωk∗

2 Pt A (g,→I4)

3 /¬Q/t A (c, ¬E)

4 //A//u from Ωk∗ ∪ {Pt, /¬Q/t}

5 \\¬A\\u from Ωk∗ ∪ {Pt, /¬Q/t}

6 \Q\t 3-5 ¬E
7 \P → Q\s 2-6→I4

where, by construction, t is not in Ωk∗ and for υN4, s = 0. So
Ωk∗ `∗NυX

\P → Q\s; but /¬(P → Q)/s ∈ Ωk∗ ; so Ωk∗ `∗NυX

/¬(P → Q)/s; so Ωk∗ is inconsistent. This is impossible; reject
the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {Pt,¬Qt} in υK∗ or υN∗. In this case, as
above, Ωk∗ is consistent and by construction, /¬(P → Q)/s ∈
Ωk∗ (in υK∗, with overline and s = 0). Suppose Ωk is inconsist-
ent. Then there is someAu such thatΩk∗∪ {Pt,¬Qt} `∗NυX

//A//u

and Ωk∗ ∪ {Pt,¬Qt} `∗NυX
\\¬A\\u. So reason as follows,

1 Ωk∗

2 Pt A (g,→I*)

3 ¬Qt A (c, ¬E)

4 //A//u from Ωk∗ ∪ {Pt,¬Qt}

5 \\¬A\\u from Ωk∗ ∪ {Pt,¬Qt}

6 Qt 3-5 ¬E
7 \P → Q\s 2-6→I*
where, by construction, t is not inΩk∗ and for υN∗, \P → Q\s is
without overline and s = 0. So Ωk∗ `∗NυX

\P → Q\s; but /¬(P →
Q)/s ∈ Ωk∗ ; so Ωk∗ `∗NυX

/¬(P → Q)/s; so Ωk∗ is inconsistent.
This is impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.

L7.6 If Γ0 is consistent, then Γ ′ is consistent.
Reasoning parallel to L2.6 and L6.6.

L7.7 If Γ0 is consistent, then Γ ′ is a scapegoat set for (→)K4
, (→)N4

, (→)K∗ ,
and (→)N∗ .
For (→)K4

and (→)N4
. Suppose Γ0 is consistent and Γ ′ `∗NυX

/¬(P →
Q)/s. By L7.6, Γ ′ is consistent; and by the constraints on subscripts, s is
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included in Γ ′. Since Γ ′ is consistent, Γ ′ 6`∗NυX
\¬¬(P → Q)\s; so there is

a stage in the construction process whereΩi∗ = Ωi−1 ∪ {/¬(P → Q)/s}

andΩi = Ωi∗ ∪ {Pt, /¬Q/t}; so by construction, Pt ∈ Γ ′ and /¬Q/t ∈ Γ ′;
so Γ ′ `∗NυX Pt and Γ ′ `∗NυX

/¬Q/t. So Γ ′ is a scapegoat set for (→)K4
and

(→)N4
– where the argument for (→)N4

assumes s = 0.
For (→)K∗ and (→)N∗ . Suppose Γ0 is consistent and Γ ′ `∗NυX

/¬(P →
Q)/s. By L7.6, Γ ′ is consistent; and by the constraints on subscripts, s is
included in Γ ′. Since Γ ′ is consistent, Γ ′ 6`∗NυX

\¬¬(P → Q)\s; so there is
a stage in the construction process whereΩi∗ = Ωi−1 ∪ {/¬(P → Q)/s}

and Ωi = Ωi∗ ∪ {Pt,¬Qt}; so by construction, Pt ∈ Γ ′ and ¬Qt ∈ Γ ′; so
Γ ′ `∗NυX Pt and Γ ′ `∗NυX ¬Qt. So Γ ′ is a scapegoat set for (→)K∗ and (→)N∗

– where the argument for (→)N∗ assumes /¬(P → Q)/s is with overline
and s = 0.

C(I) We construct an interpretation I = 〈W,N,N, h〉 based on Γ ′ as follows.

υKx: For the K systems, let W have a member ws corresponding to
each subscript s included in Γ ′. Then set N = N = W and
hws(/p/) = 1 iff Γ ′ `∗NυX

/p/s.
υN4: LetW have a member ws corresponding to each subscript s in-

cluded in Γ ′. Then set N = N = {w0}; hws(/p/) = 1 iff Γ ′ `∗NυX

/p/s; and for s 6= 0, hws(/A → B/) = 1 iff Γ ′ `∗NυX
/A → B/s.

υN∗: LetW have a member ws corresponding to each subscript s in-
cluded in Γ ′. Then set N = {w0} and N = φ; hws(/p/) = 1 iff
Γ ′ `∗NυX

/p/s; hws(P → Q) = 1 iff Γ ′ `∗NυX (P → Q)s; and for s 6= 0,
hws(A → B) = 1 iff Γ ′ `∗NυX (A → B)s.

L7.8 If Γ0 is consistent then for 〈W,N,N, h〉 constructed as above, and for
any s included in Γ ′, hws(/A/) = 1 iff Γ ′ `∗NυX

/A/s.
Suppose Γ0 is consistent and s is included in Γ ′. By L7.4, Γ ′ is s-maximal.
By L7.6 and L7.7, Γ ′ is consistent and a scapegoat set for the different
conditionals. Now by induction on the number of operators in /A/s,

Basis: If /A/s has no operators, then it is a parameter /p/s and by con-
struction, hws(/p/) = 1 iff Γ ′ `∗NυX

/p/s. So hws(/A/) = 1 iff
Γ ′ `∗NυX

/A/s.
Assp: For any i, 0 6 i < k, if /A/s has i operators, then hws(/A/) = 1

iff Γ ′ `∗NυX
/A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ ′ `∗NυX
/A/s.

If /A/s has k operators, then it is of the form /¬P/s, /P ∧ Q/s,
/P ∨ Q/s or /P → Q/s, where P and Q have < k operators.

(¬) /A/s is /¬P/s. (i) Suppose hws(/A/) = 1; then hws(/¬P/) = 1;
so by Hυ(¬), hws(\P\) = 0; so by assumption, Γ ′ 6`∗NυX

\P\s;
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so by s-maximality, Γ ′ `∗NυX
/¬P/s, where this is to say, Γ ′ `∗NυX

/A/s. (ii) Suppose Γ ′ `∗NυX
/A/s; then Γ ′ `∗NυX

/¬P/s; so by con-
sistency, Γ ′ 6`∗NυX

\P\s; so by assumption, hws(\P\) = 0; so by
Hυ(¬), hws(/¬P/) = 1, where this is to say, hws(/A/) = 1. So
hws(/A/) = 1 iff Γ ′ `∗NυX

/A/s.
(∧)
(∨)
(→) /A/s is /P → Q/s. (i) Suppose hws(/A/) = 1 but Γ ′ 6`∗NυX

/A/s;
then hws(/P → Q/) = 1, but Γ ′ 6`∗NυX

/P → Q/s; from the latter,
by s-maximality, Γ ′ `∗NυX

\¬(P → Q)\s.

υK4: In this case, N = N = K; so ws ∈ /N/. Since Γ ′ is a
scapegoat set for (→)K4

, there is some t such that Γ ′ `∗NυK4

Pt and Γ ′ `∗NυK4
\¬Q\t; from the latter, by consistency,

Γ ′ 6`∗NυK4
/Q/t; so by our assumption, hwt(P) = 1 and

hwt(/Q/) = 0; so since ws ∈ /N/, by Hυ(→)4, hws(/P →
Q/) = 0. This is impossible; reject the assumption: if
hws(/A/) = 1, then Γ ′ `∗NυX

/A/s.
υN4: In this case, when s = 0, ws ∈ /N/ and reasoning is as

above. Otherwise, by construction, if hws(/A/) = 1 then
Γ ′ `∗NυX

/A/s.
υK∗: In this case,N = N = K; sows ∈ /N/. Since Γ ′ is a scape-

goat set for (→)K∗ , there is some t such that Γ ′ `∗NυK∗ Pt

and Γ ′ `∗NυK∗ ¬Qt; from the latter, by consistency, Γ ′ 6`∗NυK∗

Qt; so by assumption, hwt(P) = 1 and hwt(Q) = 0; so
since ws ∈ /N/, by Hυ(→)∗, hws(/P → Q/) = 0. This is
impossible; reject the assumption: if hws(/A/) = 1, then
Γ ′ `∗NυX

/A/s.
υN∗: In this case, when s = 0 and /P → Q/ is without over-

line – so that \¬(P → Q)\ is ¬(P → Q) – ws ∈ /N/ and
reasoning is as immediately above. Otherwise, by con-
struction, if hws(/A/) = 1 then Γ ′ `∗NυX

/A/s.

So in any of these cases, if hws(/A/) = 1 then Γ ′ `∗NυX
/A/s.

(ii) Suppose Γ ′ `∗NυX
/A/s but hws(/A/) = 0; then Γ ′ `∗NυX

/P →
Q/s but hws(/P → Q/) = 0.

υK4: From the latter, by Hυ(→)4, there is some wt ∈ W such
that hwt(P) = 1 and hwt(/Q/) = 0; so by assumption,
Γ ′ `∗NυK4

Pt and Γ ′ 6`∗NυK4
/Q/t; so by s-maximality, Γ ′ `∗NυK4

\¬Q\t. So by reasoning as follows,
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1 Γ ′

2 /P → Q/s A (c, ¬I)

3 Pt from Γ ′

4 /Q/t 2,3→E4
5 \¬Q\t from Γ ′

6 \¬(P → Q)\s 2-5 ¬I

Γ ′ `∗NυK4
\¬(P → Q)\s; so by consistency, Γ ′ 6`∗NυK4

/P →
Q/s. This is impossible; reject the assumption: if Γ ′ `∗NυX

/A/s then hws(/A/) = 1.
υN4: When s = 0, the reasoning is as above. Otherwise, by

construction, if Γ ′ `∗NυX
/A/s, then hws(/A/) = 1.

υK∗: From the latter, by Hυ(→)∗, there is some wt ∈ W such
that hwt(//P//) = 1 and hwt(//Q//) = 0; so by assump-
tion, Γ ′ `∗NυK4

//P//t and Γ ′ 6`∗NυK4
//Q//t; so by s-maximality,

Γ ′ `∗NυK4
\\¬Q\\t. So by reasoning as follows,

1 Γ ′

2 /P → Q/s A (c, ¬I)

3 //P//t from Γ ′

4 //Q//t 2,3→E*
5 \\¬Q\\t from Γ ′

6 \¬(P → Q)\s 2-5 ¬I

Γ ′ `∗NυK∗
\¬(P → Q)\s; so by consistency, Γ ′ 6`∗NυK∗

/P →
Q/s. This is impossible; reject the assumption: if Γ ′ `∗NυX

/A/s then hws(/A/) = 1.
υN∗: When s = 0 and /P → Q/ is without overline, the reason-

ing is as immediately above. Otherwise, by construction,
if Γ ′ `∗NυX

/A/s then hws(/A/) = 1.

So in any of these cases, if Γ ′ `∗NυX
/A/s then hws(/A/) =

1. So hws(/A/) = 1 iff Γ ′ `∗NυX
/A/s.

———
For any As, hws(/A/) = 1 iff Γ ′ `∗NυX

/A/s.

L7.9 If Γ0 is consistent, then 〈W,N,N, h〉 constructed as above is an υX in-
terpretation.
This is immediate, by construction.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.

L7.10 If Γ0 is consistent, then hm(Γ0) = 1.
Reasoning parallel to L2.10 and L6.9.

Main result: Suppose Γ |=υX A but Γ 6 ǸυX A. Then Γ0 |=∗
υX A0 but Γ0 6`∗NυX A0. By

(DN), if Γ0 `∗NυX ¬¬A0, then Γ0 `∗NυX A0; so Γ0 6`∗NυX ¬¬A0; so by L7.2, Γ0 ∪ {¬A0}
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is consistent; so by L7.9 and L7.10, there is an υX interpretation 〈W,N,N, h〉m
constructed as above such that hm(Γ0 ∪ {¬A0}) = 1; so hm(0)(¬A) = 1; so
by Hυ(¬), hm(0)(A) = 0; so hm(Γ0) = 1 and hm(0)(A) = 0; so by VυX*,
Γ0 6|=∗

υX A0. This is impossible; reject the assumption: if Γ |=υX A, then Γ ǸυX A.

8   : Bx (. 10,11)
The treatment here for Priest’s chapter 11 is minimal: there are only resources
for CK first introduced in chapter 11, not chapter 10. I abandon the four-
valued approach from previous sections, and follow Priest in developing the
star-semantics on its own terms.7

8.1  /  
LB The  consists of propositional parameters p0, p1 . . . with

the operators, ¬, ∧, ∨, →, (and >). Each propositional parameter is a
; if A and B are formulas, so are ¬A, (A∧B), (A∨B), (A → B)

and (A > B). A ⊃ B abbreviates ¬A ∨ B, and A ≡ B abbreviates (A ⊃
B) ∧ (B ⊃ A).

IB Without ‘>’ in the language, an  is 〈W,N,R, ∗, v〉where
W is a set of worlds;N is a subset ofW; R is a subset ofW3 = W×W×W;
∗ is a function from worlds to worlds such that w∗∗ = w; and v is a
function such that for any w ∈ W and p, vw(p) = 1 or vw(p) = 0. As a
constraint on interpretations, we require also,

NC For any w ∈ N, Rwxy iff x = y

Where x is empty or indicates some combination of the following con-
straints,

(C8) If Rabc, then Rac∗b∗

(C9) If there is an x such that Rabx and Rxcd then there is a y such
that Racy and Rbyd

(C10) If there is an x such that Rabx and Rxcd then there is a y such
that Rbcy and Rayd

(C11) If Rabc then Rbac

(C12) If Rabc then there is an x such that Rabx and Rxbc

(C13) If Rabx and Rxcd then Racd

7The four-valued approach does apply to some of these logics. But it is complicated consid-
erably (as we have already begun to see with the double normal worlds for υX∗ of the previous
section), and the approach does not apply to all the logics. For details, see [9, 8], and for related
derivations along the lines of the four-valued approach from this paper my [11]. As I suggest, this
incapacity may be related to motivations for systems likeDW which do not transfer naturally to
stronger systems like TW, RW and especially R.
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(�) If Rabc then (i) if va(p) = 1, then vc(p) = 1, and (ii) if vc∗(p) = 1,
then va∗(p) = 1.

〈W,N,R, ∗, v〉 is a Bx interpretation when it meets the constraints from
x. System B has none of the extra constraints; BDW is BC8; BTW is
BC8−C10; BRW is BC8−C11; BR is BC8−C12; and BCK is BC8−C11,C13,�.

IB When ‘>’ is in the language, an interpretation is 〈W,N,R, {RA | A ∈
=}, ∗, v〉, where = is the set of all formulas and RA is a subset of W2.
Condition NC remains in place, but none of C8 - C13 or (�). That is
all for BC (what Priest calls CB). Where fA(w) = {x ∈ W | wRAx}, and
[A] = {x ∈ W | vw(A) = 1}, BC+ adds the constraints,

(1) For any w ∈ N, fA(w) ⊆ [A]

(2) For any w ∈ N, if w ∈ [A], then w ∈ fA(w)

TB For complex expressions,

(¬) vw(¬A) = 1 if vw∗(A) = 0, and 0 otherwise.
(∧) vw(A ∧ B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.
(∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
(→) vw(A → B) = 1 iff there are no x, y ∈ W such that Rwxy and

vx(A) = 1 but vy(B) = 0.
(>) vw(A > B) = 1 iff there is no x ∈ W such that wRAx and vx(B) =

0.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ ; then,

VB Γ |=Bx A iff there is no Bx interpretation 〈W,N,R, ∗, v〉 / 〈W,N,R, {RA |

A ∈ =}, ∗, v〉 and w ∈ N such that vw(Γ) = 1 and vw(A) = 0.

8.2  : NBx

Allow subscripts of the sort i and i#. Where s is a subscript i or i#, s is the
other. Say s is “introduced” as a subscript when either s or s is a subscript. For
subscripts s, t, u allow also expressions of the sort s ' t, s.t.u and As/t. Let
P(s) be any expression in which s appears, and P(t) the same expression with
one or more instances of s replaced by t.

R Ps

Ps

¬I Ps

Qt

¬Qt

¬Ps

¬E ¬Ps

Qt

¬Qt

Ps
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∧I Ps

Qs

(P ∧ Q)s

∧E (P ∧ Q)s

Ps

∧E (P ∧ Q)s

Qs

∨I Ps

(P ∨ Q)s

∨I Ps

(Q ∨ P)s

⊃I Ps

Qs

(P ⊃ Q)s

⊃E (P ⊃ Q)s

Ps

Qs

∨E (P ∨ Q)s

Ps

Rt

Qs

Rt

Rt

≡I Ps

Qs

Qs

Ps

(P ≡ Q)s

≡E (P ≡ Q)s

Ps

Qs

≡E (P ≡ Q)s

Qs

Ps

→I s.t.u

Pt

Qu

(P → Q)s

where t and u are not introduced
in any undischarged premise or
assumption

→E s.t.u

(P → Q)s

Pt

Qu

6→I s.t.u

Pt

¬Qu

¬(P → Q)s

6→E ¬(P → Q)s

s.t.u

Pt

¬Qu

Rv

Rv

where t and u are not introduced
in any undischarged premise or
assumption or by v

0I s ' t

0.s.t

0E 0.s.t

s ' t

'I

s ' s

'E s ' t s ' t

P(s) P(s)

P(t) P(t)

These are the rules of NB, where ⊃I, ⊃E, ≡I, ≡E and, as we shall see, 6→I and
6→E are derived. With s ' t, we can introduce s ' s by 'I, and then get t ' s

by 'E; so informally, we let 'E include also a derived rule that reverses order
around ‘'’ – using s ' t to replace some instance(s) of t (t) with s (s). As usual,
subscripts are 0 or introduced in an assumption that requires new subscripts
(and similarly for the following). To make things easier to follow, cite lines for
→E only in the order listed above: first access, then the conditional, then the
antecedent.
For relevant systems NBx, include rules from the following as appropriate.
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AM8 s.t.u

s.u.t

AM9 s.t.x

x.u.v

s.u.y

t.y.v

Pw

Pw

AM10 s.t.x

x.u.v

t.u.y

s.y.v

Pw

Pw

AM11 s.t.u

t.s.u

AM12 s.t.u

s.t.y

y.t.u

Pw

Pw

AM13 s.t.u

u.v.w

s.v.w

AM� s.t.u

Ps

Pu

AM� s.t.u

Pu

Ps

For AM9, AM10 and AM12, y is not introduced in any undischarged premise
or assumption, or by w. Note that the right-hand version of AM� is a derived
rule in NBCK: from s.t.u it follows by AM11 that t.s.u; and from AM8 that
t.u.s; so from AM11 that u.t.s; so from Pu by the left-hand version that Ps.
For the systems NBCx revert to the rules of NB. Then add >I and >E. As

we show just below, 6>I and 6>E are derived.

>I Ps/t

Qt

(P > Q)s

where t is not introduced in any
undischarged premise or assump-
tion

>E (P > Q)s

Ps/t

Qt

6>I Ps/t

¬Qt

¬(P > Q)s

6>E ¬(P > Q)s

Ps/t

¬Qt

Ru

Ru

where t is not introduced in any
undischarged premise or assump-
tion, or by u

As before, corresponding to constraints (1) and (2) for the C+ system, are AMP1
and AMP2, now restricted to apply just at the normal world 0.

AMP1 P0/t

Pt

AMP2 P0

P0/0

Where Γ is a set of unsubscripted formulas, let Γ0 be those same formulas,
each with subscript 0. Then,

NBx Γ ǸBx A iff there is an NBx derivation of A0 from the members of Γ0.

Derived rules carry over much as one would expect. Thus, e.g.,

MT (P ⊃ Q)s

¬Qs

¬Ps

NB (P ≡ Q)s (P ≡ Q)s

¬Ps ¬Qs

¬Qs ¬Ps

DS (P ∨ Q)s (P ∨ Q)s

¬Ps ¬Qs

Qs Ps
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Impl (P ⊃ Q)s / . (¬P ∨ Q)s

(¬P ⊃ Q)s / . (P ∨ Q)s

As examples, 6→I, 6→E, 6>I and 6>E are derived rules in NBx and NBCx.

6→I

1 s.t.u P
2 Pt P
3 ¬Qu P

4 (P → Q)s A (c, ¬I)

5 Qu 1,4,2→E
6 ¬Qu 3 R
7 ¬(P → Q)s 4-6 ¬I

6→E

1 ¬(P → Q)s P

2 ¬Rv A (c, ¬E)

3 s.t.u A (g,→I)
4 Pt

5 ¬Qu A (c, ¬E)

... with 1,3,4,5
6 Rv as for 6→E
7 ¬Rv 2 R
8 Qu 5-7 ¬E
9 (P → Q)s 3-8→I
10 ¬(P → Q)s 1 R
11 Rv 2-10 ¬E

6>I

1 Ps/t P
2 ¬Qt P

3 (P > Q)s A (c, ¬I)

4 Qt 1,3 >E
5 ¬Qt 2 R
6 ¬(P > Q)s 3-5 ¬I

6>E

1 ¬(P > Q)s P

2 ¬Ru A (c, ¬E)

3 Ps/t A (g, >I)

4 ¬Qt A (c, ¬E)

... with 1,3,4
5 Ru as for 6>E
6 ¬Ru 2 R
7 Qt 4-6 ¬E
8 (P > Q)s 3-7 >I
9 ¬(P > Q)s 1 R
10 Ru 2-9 ¬E

Note the way overlines work (much the way slashes worked before). For 6→E,
note that the application of→I depends on the restriction that t and u are not
introduced by v; and similarly, for 6>E the application of >I depends on the
restriction that t is not introduced by u.
As further examples, here are a few key results that parallel ones from

Priest’s text.
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A3 ǸBx (A ∧ B) → A

1 0.1.2 A (g,→I)
2 (A ∧ B)1

3 A1 2 ∧E
4 1 ' 2 1 0E
5 A2 3,4 'E
6 [(A ∧ B) → A]0 1-5→I

A5 ǸBx [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

1 0.1.2 A (g,→I)
2 [(A → B) ∧ (A → C)]1

3 2.3.4 A (g,→I)
4 A3

5 1 ' 2 1 0E
6 1.3.4 3,5 'E
7 (A → B)1 2 ∧E
8 (A → C)1 2 ∧E
9 B4 6,7,4→E
10 C4 6,8,4→E
11 (B ∧ C)4 9,10 ∧I
12 [A → (B ∧ C)]2 3-11→I
13 ([(A → B) ∧ (A → C)] → [A → (B ∧ C)])0 1-12→I

R5 (A → ¬B) ǸBx (B → ¬A)

1 (A → ¬B)0 P

2 0.1.2 A (g,→I)
3 B1

4 A2# A (c, ¬I)

5 2# ' 2# 'I
6 0.2#.2# 5 0I
7 ¬B2# 6,1,4→E
8 1 ' 2 2 0E
9 B2 3,8 'E
10 ¬A2 4-9 ¬I
11 (B → ¬A)0 2-10→I
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A9 ǸBTW
(A → B) → [(B → C) → (A → C)]

1 0.1.2 A (g,→I)
2 (A → B)1

3 2.3.4 A (g,→I)
4 (B → C)3

5 4.5.6 A (g,→I)
6 A5

7 1 ' 2 1 0E
8 (A → B)2 2,7 'E
9 2.5.7 A (g, 3,5 AM9)
10 3.7.6

11 B7 9,8,6→E
12 C6 10,4,11→E
13 C6 3,5,9-12 AM9
14 (A → C)4 5-13→I
15 [(B → C) → (A → C)]2 3-14→I
16 ((A → B) → [(B → C) → (A → C)])0 1-15→I

ǸBR
(¬A → A) → A

1 0.1.2 A (g,→I)
2 (¬A → A)1

3 ¬A2# A (c, ¬E)

4 0.2#.1# 1 AM8
5 0.2#.3 A (g, 4 AM12)
6 3.2#.1#

7 3.1.2 6 AM8
8 1.3.2 7 AM11
9 1.2#.3# 8 AM8
10 A3# 9,2,3→E
11 2# ' 3 5 0E
12 A2 10,11 'E
13 A2 4,5-12 AM12
14 ¬A2# 3 R
15 A2 3-14 ¬E
16 [(¬A → A) → A]0 1-15→I
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A13 ǸBCK
A → (B → A)

1 0.1.2 A (g,→I)
2 A1

3 2.3.4 A (g,→I)
4 B3

5 1.0.2 1 AM11
6 1.3.4 5,3 AM13
7 A4 2,6 AM�
8 (B → A)2 3-7→I
9 [A → (B → A)]0 1-8→I

ǸBCK
(A ∨ B) → ((A → B) → B)

1 0.1.2 A (g,→I)
2 (A ∨ B)1

3 2.3.4 A (g,→I)
4 (A → B)3

5 A1 A (g, 2 ∨E)

6 1 ' 2 1 0E
7 A2 5,6 'E
8 3.2.4 3 AM11
9 B4 8,4,7→E

10 B1 A (g, 2 ∨E)

11 1.0.2 1 AM11
12 1.3.4 11,3 AM13
13 B4 10,12 AM�
14 B4 2,5-9,10-13 ∨E
15 ((A → B) → B)2 3-14→I
16 [(A ∨ B) → ((A → B) → B)]0 1-15→I

8.3   
Preliminaries: Begin with generalized notions of validity. For a model 〈W,N,R,

∗, v〉 or 〈W,N,R, {RA | A ∈ =}, ∗, v〉, letm be a map from subscripts intoW such
that m(0) ∈ N and m(s) = m(s)∗. Say 〈W,N,R, ∗, v〉m and 〈W,N,R, {RA | A ∈
=}, ∗, v〉m are〈W,N,R, ∗, v〉 and 〈W,N,R, {RA | A ∈ =}, ∗, v〉 with map m. Then,
where Γ is a set of expressions of our language for derivations, vm(Γ) = 1 iff for
each As ∈ Γ , vm(s)(A) = 1, for each s ' t ∈ Γ ,m(s) = m(t), for each s.t.u ∈ Γ ,
〈m(s),m(t),m(u)〉 ∈ R, and for each As/t ∈ Γ , 〈m(s),m(t)〉 ∈ RA. Unless
otherwise noted, reasoning is meant to be neutral between interpretations of
the different types. Now expand notions of validity to include subscripted
formulas, and alternate expressions as indicated in double brackets.

VB* Γ |=∗
Bx As [[s ' t/s.t.u/As/t]] iff there is no Bx interpretation withmapm

where vm(Γ) = 1 but vm(s)(A) = 0 [[m(s) 6= m(t) / 〈m(s),m(t),m(u)〉 6∈
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R / 〈m(s),m(t)〉 6∈ RA]].

NBx* Γ `∗NBx As [[s ' t / s.t.u / As/t]] iff there is an NBx derivation of As

[[s ' t / s.t.u / As/t]] from the members of Γ .

These notions reduce to the standard ones when all the members of Γ and
A have subscript 0 (and so are not of the sort s ' t, s.t.u or As/t). For the
following, cases omitted are like ones worked, and so left to the reader.

 8.1 NBx is sound: If Γ ǸBx A then Γ |=Bx A.

L8.1 If Γ ⊆ Γ ′ and Γ |=∗
Bx Ps [[s ' t / s.t.u / As/t]], then Γ ′ |=∗

Bx Ps [[s '
t / s.t.u / As/t]].
Suppose Γ ⊆ Γ ′ and Γ |=∗

Bx Ps [[s ' t / s.t.u / As/t]], but Γ ′ 6|=∗
Bx Ps [[s ' t /

s.t.u / As/t]]. From the latter, by VB*, there is some Bx interpretation
with v and m such that vm(Γ ′) = 1 but vm(s)(P) = 0 [[m(s) 6= m(t) /

〈m(s),m(t),m(u)〉 6∈ R / 〈m(s),m(t)〉 6∈ RA]]. But since vm(Γ ′) = 1 and
Γ ⊆ Γ ′, vm(Γ) = 1; so vm(Γ) = 1 but vm(s)(P) = 0 [[m(s) 6= m(t) /

〈m(s),m(t),m(u)〉 6∈ R / 〈m(s),m(t)〉 6∈ RA]]; so by VB*, Γ 6|=∗
Bx Ps

[[s ' t / s.t.u/As/t]]. This is impossible; reject the assumption: if Γ ⊆ Γ ′

and Γ |=∗
Bx Ps [[s ' t / s.t.u / As/t]], then Γ ′ |=∗

Bx Ps [[s ' t / s.t.u / As/t]].

Main result: For each line in a derivation let Pi be the expression on line i

and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NBx P then Γ |=∗

Bx P. As
above, this reduces to the standard result when P and all the members of Γ are
formulas with subscript 0. Suppose Γ `∗NBx P. Then there is a derivation of P

from premises in Γ where P appears under the scope of the premises alone. By
induction on line number of this derivation, we show that for each line i of this
derivation, Γi |=∗

Bx Pi. The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumptionAs [[s ' t/s.t.u/As/t]]. Then Γ1 = {As}

[[{s ' t} / {s.t.u} / {As/t}]]; so for any Bx interpretation with its v andm,
vm(Γ1) = 1 iff vm(s)(A) = 1 [[m(s) = m(t) / 〈m(s),m(t),m(u)〉 ∈ R /

〈m(s),m(t)〉 ∈ RA]]; so there is no Bx interpretation with v and m such
that vm(Γ1) = 1 but vm(s)(A) = 0 [[m(s) 6= m(t) / 〈m(s),m(t),m(u)〉 6∈
R / 〈m(s),m(t)〉 6∈ RA]]. So by VB*, Γ1 |=∗

Bx As [[s ' t / s.t.u / As/t]],
where this is just to say, Γ1 |=∗

Bx P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Bx Pi.

Show: Γk |=∗
Bx Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E,→I,→E, 'I, 'E, 0I, 0E or, depending on
the system, AM8, AM9, AM10, AM11, AM12, AM13, AM�, >I, >E,
AMP1, or AMP2. If Pk is a premise or an assumption, then as in the
basis, Γk |=∗

Bx Pk. So suppose Pk arises by one of the rules.
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(R)

(∧I)

(∧E)

(∨I)

(∨E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt

j ¬Bt

k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗
Bx Bt and Γj |=∗

Bx ¬Bt;
but by the nature of access, Γi ⊆ Γk∪ {As} and Γj ⊆ Γk∪ {As}; so by L8.1,
Γk ∪ {As} |=∗

Bx Bt and Γk ∪ {As} |=∗
Bx ¬Bt. Suppose Γk 6|=∗

Bx ¬As; then by
VB*, there is a Bx interpretation with v and m such that vm(Γk) = 1

but vm(s)(¬A) = 0; so by TB(¬), vm(s)∗(A) = 1; so by the construction
of m, vm(s)(A) = 1; so vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk ∪
{As}) = 1; so by VB*, vm(t)(B) = 1 and vm(t)(¬B) = 1; from the latter,
by TB(¬), vm(t)∗(B) = 0; so by the construction of m, vm(t)(B) = 0.
This is impossible; reject the assumption: Γk |=∗

Bx ¬As, which is to say,
Γk |=∗

Bx Pk.

(¬E)

(→I) If Pk arises by→I, then the picture is like this,

s.t.u

At

i Bu

k (A → B)s

where i < k, t, u are not introduced in any member of Γk (in any undis-
charged premise or assumption), and Pk is (A → B)s. By assumption,
Γi |=∗

Bx Bu; but by the nature of access, Γi ⊆ Γk ∪ {s.t.u,At}; so by L8.1,
Γk ∪ {s.t.u,At} |=∗

Bx Bu. Suppose Γk 6|=∗
Bx (A → B)s; then by VB*, there

is a Bx interpretation with W, R, v and m such that vm(Γk) = 1 but
vm(s)(A → B) = 0; so by TB(→), there are x, y ∈ W such that Rm(s)xy

and vx(A) = 1 but vy(B) = 0. Now consider a map m′ like m except
that m′(t) = x, m′(t) = x∗, m′(u) = y, and m′(u) = y∗; since t and u

(along with t and u) do not appear in Γk, it remains that vm′(Γk) = 1;
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since vx(A) = 1, vm′(t)(A) = 1; and since Rm(s)xy, with m(s) = m′(s),
we have 〈m′(s),m′(t),m′(u)〉 ∈ R; so vm′(Γk ∪ {s.t.u,At}) = 1; so by
VB*, vm′(u)(B) = 1. Butm′(u) = y; so vy(B) = 1. This is impossible;
reject the assumption: Γk |=∗

Bx (A → B)s, which is to say, Γk |=∗
Bx Pk.

(→E) If Pk arises by→E, then the picture is like this,

h s.t.u

i (A → B)s

j At

k Bu

where h, i, j < k and Pk is Bu. By assumption, Γh |=∗
Bx s.t.u, Γi |=∗

Bx (A →
B)s and Γj |=∗

Bx At; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk and
Γj ⊆ Γk; so by L8.1, Γk |=∗

Bx s.t.u, Γk |=∗
Bx (A → B)s and Γk |=∗

Bx At. Sup-
pose Γk 6|=∗

Bx Bu; then by VB*, there is some Bx interpretation withW,
R, v and m such that vm(Γk) = 1 but vm(u)(B) = 0; since vm(Γk) = 1,
by VB*, 〈m(s),m(t),m(u)〉 ∈ R, vm(s)(A → B) = 1 and vm(t)(A) = 1;
since vm(s)(A → B) = 1, by TB(→), there are no x, y ∈ W such that
Rm(s)xy and vx(A) = 1 but vy(B) = 0; so since 〈m(s),m(t),m(u)〉 ∈ R,
it is not the case that vm(t)(A) = 1 and vm(u)(B) = 0. This is im-
possible; reject the assumption: Γk |=∗

Bx Bu, which is to say, Γk |=∗
Bx Pk.

('I) If Pk arises by 'I, then the picture is like this,

k s ' s

where Pk is s ' s. Suppose Γk 6|=∗
Bx s ' s; then by VB*, there is a Bx

interpretation with v, and m such that vm(Γk) = 1 but m(s) 6= m(s).
This is impossible; reject the assumption: Γk |=∗

Bx s ' s, which is to say,
Γk |=∗

Bx Pk.

('E) If Ak arises by 'E, then the picture is like this,

i s ' t

j A(s)

k A(t)

or
i s ' t

k A(s)

k A(t)

where i, j < k and Pk is A(t) or A(t). By assumption, Γi |=∗
Bx s ' t and

Γj |=∗
Bx A(s) / A(s); but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so

by L8.1, Γk |=∗
Bx s ' t and Γk |=∗

Bx A(s) / A(s). In the right-hand case,
A(s) is of the sort, Au, u ' v, u.v.w or Au/v where one of u, v, or w

is s. Suppose A(s) is As and Γk 6|=∗
Bx At. Then by VB*, there is some

Bx interpretation with v andm such that vm(Γk) = 1 but vm(t)(A) = 0.
Since vm(Γk) = 1, by VB*, m(s) = m(t) and vm(s)(A) = 1; since
m(s) = m(t), m(s)∗ = m(t)∗; but by the construction of m, m(s)∗ =
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m(s) and m(t)∗ = m(t); so m(s) = m(t); so vm(t)(A) = 1. This is
impossible; reject the assumption: Γk |=∗

Bx At, which is to say, Γk |=∗
Bx Pk.

And similarly in the other cases.

(0I) If Pk arises by 0I, then the picture is like this,

i s ' t

k 0.s.t

where i < k and Pk is 0.s.t. By assumption, Γi |=∗
Bx s ' t; but by the

nature of access, Γi ⊆ Γk; so by L8.1, Γk |=∗
Bx s ' t. Suppose Γk 6|=∗

Bx

0.s.t; then by VB*, there is a Bx interpretation with W, N, R, v and
m such that vm(Γk) = 1 but 〈m(0),m(s),m(t)〉 6∈ R; since vm(Γk) = 1,
by VB*, m(s) = m(t); and by the construction of m, m(0) ∈ N; so by
NC, 〈m(0),m(s),m(t)〉 ∈ R. This is impossible; reject the assumption:
Γk |=∗

Bx 0.s.t, which is to say, Γk |=∗
Bx Pk.

(0E) If Pk arises by 0E, then the picture is like this,

i 0.s.t

k s ' t

where i < k and Pk is s ' t. By assumption, Γi |=∗
Bx 0.s.t; but by the

nature of access, Γi ⊆ Γk; so by L8.1, Γk |=∗
Bx 0.s.t. Suppose Γk 6|=∗

Bx

s ' t; then by VB*, there is a Bx interpretation with W, N, R, v

and m such that vm(Γk) = 1 but m(s) 6= m(t); since vm(Γk) = 1, by
VB*, 〈m(0),m(s),m(t)〉 ∈ R; and by the construction ofm,m(0) ∈ N;
so by NC, m(s) = m(t). This is impossible; reject the assumption:
Γk |=∗

Bx s ' t, which is to say, Γk |=∗
Bx Pk.

(AM8) If Pk arises by AM8, then the picture is like this,

i s.t.u

k s.u.t

where i < k and Pk is s.u.t. Where this rule is included in NBx, Bx in-
cludes condition C8. By assumption, Γi |=∗

Bx s.t.u; but by the nature
of access, Γi ⊆ Γk; so by L8.1, Γk |=∗

Bx s.t.u. Suppose Γk 6|=∗
Bx s.u.t;

then by VB*, there is a Bx interpretation with R, v and m such that
vm(Γk) = 1 but 〈m(s),m(u),m(t)〉 6∈ R; since vm(Γk) = 1, by VB*,
〈m(s),m(t),m(u)〉 ∈ R; so by C8, 〈m(s),m(u)∗,m(t)∗〉 ∈ R; so by the
construction of m, 〈m(s),m(u),m(t)〉 ∈ R. This is impossible; reject
the assumption: Γk |=∗

Bx s.u.t, which is to say, Γk |=∗
Bx Pk.

(AM9) If Pk arises by AM9, then the picture is like this,
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h s.t.x

i x.u.v

s.u.y

t.y.v

j Aw

k Aw

where h, i, j < k, y is not introduced in any member of Γk (in any undis-
charged premise or assumption) or byw, and Pk isAw. Where this rule
is included in NBx, Bx includes condition C9. By assumption, Γh |=∗

Bx

s.t.x, Γi |=∗
Bx x.u.v and Γj |=∗

Bx Aw; but by the nature of access, Γh ⊆ Γk,
Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.u.y, t.y.v}; so by L8.1, Γk |=∗

Bx s.t.x, Γk |=∗
Bx x.u.v

and Γk ∪ {s.u.y, t.y.v} |=∗
Bx Aw. Suppose Γk 6|=∗

Bx Aw; then by VB*,
there is a Bx interpretation with W, R, v and m such that vm(Γk) = 1

but vm(w)(A) = 0; since vm(Γk) = 1, by VB*, 〈m(s),m(t),m(x)〉 ∈ R

and 〈m(x),m(u),m(v)〉 ∈ R; so by C9, there is some z ∈ W such that
〈m(s),m(u), z〉 ∈ R and 〈m(t), z,m(v)〉 ∈ R. Now consider a mapm′ like
m except that m′(y) = z and m′(y) = z∗; since y (along with y) does
not appear in Γk, it remains that vm′(Γk) = 1; and since m(s) = m′(s),
and similarly for t, u and v, 〈m′(s),m′(u),m′(y)〉 ∈ R and 〈m′(t),m′(y),

m′(v)〉 ∈ R; so vm′(Γk ∪ {s.u.y, t.y.v}) = 1; so by VB*, vm′(w)(A) = 1.
But since y is not introduced by w, m′(w) = m(w); so vm(w)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

Bx Aw, which is to say,
Γk |=∗

Bx Pk.

(AM10)

(AM11)

(AM12)

(AM13) If Pk arises by AM13, then the picture is like this,

i s.t.u

j u.v.w

k s.v.w

where i, j < k and Pk is s.v.w. Where this rule is included in NBx,
Bx includes condition C13. By assumption, Γi |=∗

Bx s.t.u and Γj |=∗
Bx

u.v.w; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L8.1,
Γk |=∗

Bx s.t.u and Γj |=∗
Bx u.v.w. Suppose Γk 6|=∗

Bx s.v.w; then by VB*,
there is a Bx interpretation with R, v and m such that vm(Γk) = 1

but 〈m(s),m(v),m(w)〉 6∈ R; since vm(Γk) = 1, by VB*, we have
〈m(s),m(t),m(u)〉 ∈ R and 〈m(u),m(v),m(w)〉 ∈ R; and so by C13,
〈m(s),m(v),m(w)〉 ∈ R. This is impossible; reject the assumption:
Γk |=∗

Bx s.v.w, which is to say, Γk |=∗
Bx Pk.
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(AM�) If Pk arises by AM�, then the picture is like this,

i s.t.u

j As

k Au

where i, j < k and Pk is Au. In BCK, where this rule is included in NBx,
Bx includes condition (�) along with C8, C11 and C13. By assumption,
Γi |=∗

Bx s.t.u and Γj |=∗
Bx As; but by the nature of access, Γi ⊆ Γk and

Γj ⊆ Γk; so by L8.1, Γk |=∗
Bx s.t.u and Γk |=∗

Bx As. Suppose Γk 6|=∗
Bx Au; then

by VB*, there is a Bx interpretation with v andm such that vm(Γk) = 1

but vm(u)(A) = 0; since vm(Γk) = 1, by VB*, 〈m(s),m(t),m(u)〉 ∈
R and vm(s)(A) = 1; But given Rabc, under current constraints, (i) if
va(A) = 1 then vc(A) = 1 and (ii) if vc∗(A) = 1 then va∗(A) = 1.
Suppose Rabc.

Basis: A is a parameter p. (i) Suppose va(A) = 1; then va(p) = 1; so
by (�), vc(p) = 1; so vc(A) = 1. (ii) Suppose vc∗(A) = 1; then
vc∗(p) = 1; so by (�), va∗(p) = 1; so va∗(A) = 1.

Assp: For any i, 0 6 i < k, if A has i operator symbols then (i) if
va(A) = 1 then vc(A) = 1 and (ii) if vc∗(A) = 1 then va∗(A) = 1.

Show: If A has k operator symbols then (i) if va(A) = 1 then vc(A) = 1

and (ii) if vc∗(A) = 1 then va∗(A) = 1.
In this system we do not have > in the language. So if A has k

operator symbols, it is of the form ¬P, P ∧ Q, P ∨ Q, or P → Q

where P and Q have < k operator symbols.
(¬) A is ¬P. (i) Suppose va(A) = 1; then va(¬P) = 1; so by TB(¬),

va∗(P) = 0; so by assumption, vc∗(P) = 0; so by TB(¬), vc(¬P) =

1; so vc(A) = 1. (ii) Suppose vc∗(A) = 1; then vc∗(¬P) = 1; so
by TB(¬), vc(P) = 0; so by assumption, va(P) = 0; so by TB(¬),
va∗(¬P) = 1; so va∗(A) = 1.

(∧) A is P ∧ Q. (i) Suppose va(A) = 1; then va(P ∧ Q) = 1; so by
TB(∧), va(P) = 1 and va(Q) = 1; so by assumption, vc(P) = 1

and vc(Q) = 1; so by TB(∧), vc(P ∧ Q) = 1; so vc(A) = 1. (ii)
Suppose vc∗(A) = 1; then vc∗(P∧Q) = 1; so by TB(∧), vc∗(P) = 1

and vc∗(Q) = 1; so by assumption, va∗(P) = 1 and va∗(Q) = 1;
so by TB(∧), va∗(P ∧ Q) = 1; so va∗(A) = 1.

(∨)
(→) A is P → Q. (i) Suppose va(A) = 1 but vc(A) = 0; then va(P →

Q) = 1 but vc(P → Q) = 0. From the latter, by TB(→), there are
w, x ∈ W such that Rcwx and vw(P) = 1 but vx(Q) = 0. From
the former, by TB(→), there are no y, z ∈ W such that Rayz and
vy(P) = 1 but vz(Q) = 0. But since Rabc and Rcwx, by C13,
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Rawx; so it is not the case that vw(P) = 1 and vx(Q) = 0. This is
impossible; reject the assumption: if va(A) = 1, then vc(A) = 1.
(ii) Suppose vc∗(A) = 1 but va∗(A) = 0; then vc∗(P → Q) = 1 but
va∗(P → Q) = 0. From the latter, by TB(→), there are w, x ∈ W

such that Ra∗wx and vw(P) = 1 but vx(Q) = 0. From the former,
by TB(→), there are no y, z ∈ W such that Rc∗yz and vy(P) = 1

but vz(Q) = 0. But since Rabc, by C11, Rbac; so by C8, Rbc∗a∗;
so by C11, Rc∗ba∗; so with Ra∗wx, by C13, Rc∗wx; so it is not the
case that vw(P) = 1 and vx(Q) = 0. This is impossible; reject the
assumption: if vc∗(A) = 1, then va∗(A) = 1.

———
For any A, (i) if va(A) = 1 then vc(A) = 1 and (ii) if vc∗(A) = 1 then
va∗(A) = 1.

So, returning to the main case, vm(u)(A) = 1. This is impossible; reject
the assumption: Γk |=∗

Bx Au, which is to say, Γk |=∗
Bx Pk.

(>I)

(>E) If Pk arises by >E, then the picture is like this,

i (A > B)s

j As/t

k Bt

where i, j < k and Pk is Bt. By assumption, Γi |=∗
Bx (A > B)s and Γj |=∗

Bx

As/t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L8.1,
Γk |=∗

Bx (A > B)s and Γk |=∗
Bx As/t. Suppose Γk 6|=∗

Bx Bt; then by VB*,
there is some Bx interpretation withW, {RA | A ∈ =}, v andm such that
vm(Γk) = 1 but vm(t)(B) = 0; since vm(Γk) = 1, by VB*, vm(s)(A >

B) = 1 and 〈m(s),m(t)〉 ∈ RA; from the former, by TB(>), any w ∈ W

such thatm(s)RAw has vw(B) = 1; so vm(t)(B) = 1. This is impossible;
reject the assumption: Γk |=∗

Bx Bt, which is to say, Γk |=∗
Bx Pk.

(AMP1) If Pk arises by AMP1, then the picture is like this,

i A0/t

k At

where i < k and Pk is At. Where this rule is in NBx, Bx includes
condition (1). By assumption, Γi |=∗

Bx A0/t; but by the nature of access,
Γi ⊆ Γk; so by L8.1, Γk |=∗

Bx A0/t. Suppose Γk 6|=∗
Bx At; then by VB*,

there is some Bx interpretation with N, {RA | A ∈ =}, v andm such that
vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VB*, m(t) ∈
fA(m(0)); but by the construction of m, m(0) ∈ N; so by condition (1),
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m(t) ∈ [A]; so vm(t)(A) = 1. This is impossible; reject the assumption:
Γk |=∗

Bx At, which is to say, Γk |=∗
Bx Pk.

(AMP2) If Pk arises by AMP2, then the picture is like this,

i A0

k A0/0

where i < k and Pk is A0/0. Where this rule is in NBx, Bx includes
condition (2). By assumption, Γi |=∗

Bx A0; but by the nature of access,
Γi ⊆ Γk; so by L8.1, Γk |=∗

Bx A0. Suppose Γk 6|=∗
Bx A0/0; then by VB*,

there is some Bx interpretation with N, {RA | A ∈ =}, v and m such
that vm(Γk) = 1 but m(0) 6∈ fA(m(0)); since vm(Γk) = 1, by VC*,
vm(0)(A) = 1; so m(0) ∈ [A]; and by the construction of m, m(0) ∈ N;
so by condition (2), m(0) ∈ fA(m(0)). This is impossible; reject the
assumption: Γk |=∗

Bx A0/0, which is to say, Γk |=∗
Bx Pk.

———
For any i, Γi |=∗

Bx Pi.

 8.2 NBx is complete: if Γ |=Bx A then Γ ǸBx A.

Suppose Γ |=Bx A; then Γ0 |=∗
Bx A0; we show that Γ0 `∗NBx A0. As usual, this

reduces to the standard notion. For the following, fix on some particular con-
straint(s) x. Then definitions of consistency etc. are relative to it.

C Γ is  iff there is no As such that Γ `∗NBx As and Γ `∗NBx ¬As.

L8.2 If s is 0 or introduced in Γ , and Γ 6`∗NBx ¬Ps, then Γ ∪ {Ps} is consistent.
Suppose s is 0 or introduced in Γ and Γ 6`∗NBx ¬Ps but Γ ∪ {Ps} is in-
consistent. Then there is some At such that Γ ∪ {Ps} `∗NBx At and
Γ ∪ {Ps} `∗NBx ¬At. But then we can argue,

1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}

4 ¬At from Γ ∪ {Ps}

5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or introduced in
Γ ; so Γ `∗NBx ¬Ps. But this is impossible; reject the assumption: if s is 0

or introduced in Γ and Γ 6`∗NBx ¬Ps, then Γ ∪ {Ps} is consistent.

L8.3 There is an enumeration of all the subscripted formulas, P1 P2 . . . In
addition, there is an enumeration of these formulas with access rela-
tions s.t.u and with pairs of the sort s.t.u / u.v.w.
Proof by construction.
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M Γ is  - iff for any As either Γ `∗NBx As or Γ `∗NBx ¬As.

S Γ is a  set for→ iff for every formula of the form ¬(A → B)s,
if Γ `∗NBx ¬(A → B)s then there are y and z such that Γ `∗NBx s.y.z,
Γ `∗NBx Ay and Γ `∗NBx ¬Bz.
Γ is a  set for > iff for every formula of the form ¬(A > B)s,
if Γ `∗NBx ¬(A > B)s then there is some y such that Γ `∗NBx As/y and
Γ `∗NBx ¬By.
Γ is a  set for C9/C10 iff for any access pair s.t.u / u.v.w, if
Γ `∗NBx s.t.u and Γ `∗NBx u.v.w, then there is a y such that Γ `∗NBx s.v.y and
Γ `∗NBx t.y.w, and a z such that Γ `∗NBx t.v.z and Γ `∗NBx s.z.w.
Γ is a  set for C12 iff for any access relation s.t.u, if Γ `∗NBx

s.t.u, then there is a y such that Γ `∗NBx s.t.y and Γ `∗NBx y.t.u.

C(Γ ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ ′ as follows. Set Ω0 = Γ0. By L8.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas, together with all the access
relations s.t.u if C12 is in Bx, and pairs s.t.u/u.v.w if C9 and C10 are in
Bx; let E0 be this enumeration. Then for the first expression P in Ei−1

such that all its subscripts are 0 or introduced in Ωi−1, let Ei be like
Ei−1 but without P, and set,

Ωi = Ωi−1 if Ωi−1 ∪ {P} is inconsistent
Ωi∗ = Ωi−1 ∪ {P} if Ωi−1 ∪ {P} is consistent

and
Ωi = Ωi∗ if P is not of the form ¬(P →

Q)s, ¬(P > Q)s, s.t.u / u.v.w,
or s.t.u

Ωi = Ωi∗ ∪ {s.y.z, Py¬Qz} if P is of the form ¬(P → Q)s

Ωi = Ωi∗ ∪ {Ps/y,¬Qy} if P is of the form ¬(P > Q)s

Ωi = Ωi∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w} if P is of the form s.t.u /u.v.w

Ωi = Ωi∗ ∪ {s.t.y, y.t.u} if P is of the form s.t.u

-where y and z are the first subscripts not introduced in Ωi∗

then
Γ ′ =

⋃
i>0 Ωi

Note that there are always sure to be subscripts y and z not inΩi∗ inso-
far as there are infinitely many subscripts, and at any stage only finitely
many expressions are added – the only subscripts in the initial Ω0 be-
ing 0. Suppose s is introduced in Γ ′; then there is some Ωi in which it
is first introduced; and any expression Pj in the original enumeration
that introduces subscript s is sure to be “considered” for inclusion at a
subsequent stage.

L8.4 For any s introduced in Γ ′, Γ ′ is s-maximal.
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Suppose s is introduced in Γ ′ but Γ ′ is not s-maximal. Then there is
some As such that Γ ′ 6`∗NBx As and Γ ′ 6`∗NBx ¬As. For any i, each member
of Ωi−1 is in Γ ′; so if Ωi−1 `∗NBx ¬As then Γ ′ `∗NBx ¬As; but Γ ′ 6`∗NBx ¬As;
so Ωi−1 6`∗NBx ¬As; so since s is introduced in Γ ′, by L8.2, Γ ′ ∪ {As} is
consistent; so there is a stage in the construction that setsΩi∗ = Ωi−1∪
{As}; so by construction, As ∈ Γ ′; so Γ ′ `∗NBx As. This is impossible;
reject the assumption: Γ ′ is s-maximal.

L8.5 If Γ0 is consistent, then each Ωi is consistent.
Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

We know that Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {P}, (iii)
Ωk∗∪{s.y.z, Py,¬Qz}, (iv)Ωk∗∪{Ps/y,¬Qy}, (v)Ωk∗∪{s.v.y, t.y.w,

t.v.z, s.z.w}, or (vi) Ωk∗ ∪ {s.t.y, y.t.u}.
(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) SupposeΩk isΩk∗ = Ωk−1∪ {P}. Then by construction,Ωk−1∪

{P} is consistent; so Ωk is consistent.
(iii) SupposeΩk isΩk∗ ∪ {s.y.z, Py,¬Qz}. In this case, as above,Ωk∗

is consistent and by construction, ¬(P → Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Ax and ¬Ax such that Ωk∗ ∪
{s.y.z, Py,¬Qz} `∗NBx Ax and Ωk∗ ∪ {s.y.z, Py,¬Qz} `∗NBx ¬Ax. So
reason as follows,

1 Ωk∗

2 s.y.z A (g,→I)
3 Py

4 ¬Qz A (c, ¬E)

5 Ax from Ωk∗ ∪ {s.y.z, Py,¬Qz}

6 ¬Ax from Ωk∗ ∪ {s.y.z, Py,¬Qz}

7 Qz 4-6 ¬E
8 (P → Q)s 2-7→I

where, by construction, y and z are not introduced Ωk∗ . So
Ωk∗ `∗NBx (P → Q)s; but ¬(P → Q)s ∈ Ωk∗ ; so Ωk∗ `∗NBx ¬(P →
Q)s; so Ωk∗ is inconsistent. This is impossible; reject the as-
sumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {Ps/y,¬Qy}. In this case, as above, Ωk∗
is consistent and by construction, ¬(P > Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Ax and ¬Ax such that Ωk∗ ∪
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{Ps/y,¬Qy} `∗NBx Ax and Ωk∗ ∪ {Ps/y,¬Qy} `∗NBx ¬Ax. So reason
as follows,
1 Ωk∗

2 Ps/y A (g, >I)

3 ¬Qy A (c, ¬E)

4 Ax from Ωk∗ ∪ {Ps/y,¬Qy}

5 ¬Ax from Ωk∗ ∪ {Ps/y,¬Qy}

6 Qy 3-5 ¬E
8 (P > Q)s 2-6 >I

where, by construction, y is not introduced Ωk∗ . So Ωk∗ `∗NBx

(P > Q)s; but ¬(P > Q)s ∈ Ωk∗ ; so Ωk∗ `∗NBx ¬(P > Q)s; so Ωk∗

is inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

(v) Suppose Ωk is Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}. In this case, as
above,Ωk∗ is consistent and by construction, s.t.u, u.v.w ∈ Ωk∗ .
Suppose Ωk is inconsistent. Then there are Ax and ¬Ax such
thatΩk∗∪{s.v.y, t.y.w, t.v.z, s.z.w} `∗NBx Ax and in addition,Ωk∗∪
{s.v.y, t.y.w, t.v.z, s.z.w} `∗NBx ¬Ax. So reason as follows,
1 Ωk∗

2 s.t.u member of Ωk∗

3 u.v.w member of Ωk∗

4 s.v.y A (g, AM9)
5 t.y.w

6 t.v.z A (g, AM10)
7 s.z.w

8 (A → A)0 A (c, ¬I)

9 Ax from Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}

10 ¬Ax from Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}

11 ¬(A → A)0# 8-10 ¬I
12 ¬(A → A)0# 2,3,6-11 AM10
13 ¬(A → A)0# 2,3,4-12 AM9

where, by construction, y and z are not introduced Ωk∗ . So
Ωk∗ `∗NBx ¬(A → A)0# ; but `∗NBx (A → A)0; so Ωk∗ is inconsist-
ent. This is impossible; reject the assumption: Ωk is consistent.

(vi) Similarly.
———
For any i, Ωi is consistent.

L8.6 If Γ0 is consistent, then Γ ′ is consistent.
Suppose Γ0 is consistent, but Γ ′ is not; from the latter, there is some
Ps such that Γ ′ `∗NBx Ps and Γ ′ `∗NBx ¬Ps. Consider derivations D1 and
D2 of these results, and the premises Pi . . .Pj of these derivations. By
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construction, there is an Ωk with each of these premises as a member;
so D1 and D2 are derivations from Ωk; so Ωk is not consistent. But
since Γ0 is consistent, by L8.5, Ωk is consistent. This is impossible;
reject the assumption: if Γ0 is consistent then Γ ′ is consistent.

L8.7 If Γ0 is consistent, then Γ ′ is a scapegoat set for→, > and, in the appro-
priate systems, for C9/C10 and C12.
For →. Suppose Γ0 is consistent and Γ ′ `∗NBx ¬(P → Q)s. By L8.6,
Γ ′ is consistent; and by the constraints on subscripts, s is introduced
in Γ ′. Since Γ ′ `∗NBx ¬(P → Q)s, Γ ′ has just the same consequences as
Γ ′∪ {¬(P → Q)s}; so Γ ′∪ {¬(P → Q)s} is consistent, and for anyΩj,Ωj∪
{¬(P → Q)s} is consistent. So there is a stage in the construction pro-
cess where Ωi∗ = Ωi−1 ∪ {¬(P → Q)s} and Ωi = Ωi∗ ∪ {s.y.z, Py,¬Qz};
so by construction, s.y.z, Py,¬Qz ∈ Γ ′; so Γ ′ `∗NBx s.y.z, Γ ′ `∗NBx Py and
Γ ′ `∗NBx ¬Qz. So Γ ′ is a scapegoat set for→.
For >. Suppose Γ0 is consistent and Γ ′ `∗NBx ¬(P > Q)s. By L8.6, Γ ′

is consistent; and by the constraints on subscripts, s is introduced in
Γ ′. Since Γ ′ `∗NBx ¬(P > Q)s, Γ ′ has just the same consequences as Γ ′ ∪
{¬(P > Q)s}; so Γ ′ ∪ {¬(P > Q)s} is consistent, and for any Ωj, Ωj ∪
{¬(P > Q)s} is consistent. So there is a stage in the construction process
where Ωi∗ = Ωi−1 ∪ {¬(P > Q)s} and Ωi = Ωi∗ ∪ {Ps/y,¬Qy}; so by
construction, Ps/y,¬Qy ∈ Γ ′; so Γ ′ `∗NBx Ps/y and Γ ′ `∗NBx ¬Qy. So Γ ′ is a
scapegoat set for >.
For C9/C10. Suppose Γ0 is consistent, Γ ′ `∗NBx s.t.u and Γ ′ `∗NBx u.v.w.
By L8.6, Γ ′ is consistent; and by the constraints on subscripts, s, t, u, v
and w are introduced in Γ ′. Since Γ ′ `∗NBx s.t.u, and Γ ′ `∗NBx u.v.w, Γ ′ has
just the same consequences as Γ ′ ∪ {s.t.u, u.v.w}; so Γ ′ ∪ {s.t.u, u.v.w} is
consistent, and for anyΩj,Ωj∪ {s.t.u, u.v.w} is consistent. So there is a
stage in the construction process whereΩi∗ = Ωi−1∪ {s.t.u, u.v.w} and
Ωi = Ωi∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}; so by construction, s.v.y, t.y.w,
t.v.z, s.z.w ∈ Γ ′; so there is a y such that Γ ′ `∗NBx s.v.y and Γ ′ `∗NBx t.y.w,
and there is a z such that Γ ′ `∗NBx t.v.z and Γ ′ `∗NBx s.z.w. So Γ ′ is a
scapegoat set for C9/C10. And similarly for C12.

C(I) We construct an interpretation IBx = 〈W,N,R, ∗, v〉 or 〈W,N,R, {RA |

A ∈ =}, ∗, v〉 based on Γ ′ as follows. Let W have a member ws corres-
ponding to each subscript s introduced in Γ ′, except that if Γ ′ `∗NBx s ' t

then ws = wt and ws = wt (we might do this, in the usual way, by be-
ginning with equivalence classes on subscripts). Then set N = {w0};
〈ws, wt, wu〉 ∈ R iff Γ ′ `∗NBx s.t.u; 〈ws, wt〉 ∈ RA iff Γ ′ `∗NBx As/t;
∗ = {〈ws, ws〉 | s is introduced in Γ ′}; and vws(p) = 1 iff Γ ′ `∗NBx ps.
Note that the specification is consistent: Suppose ws = wt; then by
construction, Γ ′ `∗NBx s ' t; so by'E, Γ ′ `∗NBx ps iff Γ ′ `∗NBx pt; so vws(p) =
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vwt(p); and similarly in other cases. Also, the ∗-function has the right
form, as s, s are introduced in pairs, and 〈ws, ws#〉 ∈ ∗ iff 〈ws# , ws〉 ∈ ∗.

L8.8 If Γ0 is consistent then for IBx constructed as above, and for any s in-
troduced in Γ ′, vws(A) = 1 iff Γ ′ `∗NBx As.
Suppose Γ0 is consistent and s is introduced in Γ ′. By L8.4, Γ ′ is s-
maximal. By L8.6 and L8.7, Γ ′ is consistent and a scapegoat set for →
and >. Now by induction on the number of operators in As,

Basis: IfAs has no operators, then it is a parameter ps and by construc-
tion, vws(p) = 1 iff Γ ′ `∗NBx ps. So vws(A) = 1 iff Γ ′ `∗NBx As.

Assp: For any i, 0 6 i < k, if As has i operators, then vws(A) = 1 iff
Γ ′ `∗NBx As.

Show: If As has k operators, then vws(A) = 1 iff Γ ′ `∗NBx As.
If As has k operators, then it is of the form ¬Ps, (P ∧ Q)s, (P ∨

Q)s, (P → Q)s, or (P > Q)s where P and Q have < k operators.
(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P) = 1; so by

TB(¬), vw∗
s
(P) = 0; so by construction, vws(P) = 0; so by as-

sumption, Γ ′ 6`∗NBx Ps; so by s-maximality, Γ ′ `∗NBx ¬Ps, where this
is to say, Γ ′ `∗NBx As. (ii) Suppose Γ ′ `∗NBx As; then Γ ′ `∗NBx ¬Ps; so
by consistency, Γ ′ 6`∗NBx Ps; so by assumption, vws(P) = 0; so by
construction, vw∗

s
(P) = 0; so by TB(¬), vws(¬P) = 1, where this

is to say, vws(A) = 1. So vws(A) = 1 iff Γ ′ `∗NBx As.
(∧)
(∨)
(→) As is (P → Q)s. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NBx As; then

vws(P → Q) = 1 but Γ ′ 6`∗NBx (P → Q)s. From the latter, by s-
maximality, Γ ′ `∗NBx ¬(P → Q)s; so, since Γ ′ is a scapegoat set for
→, there are some y and z such that Γ ′ `∗NBx s.y.z, Γ ′ `∗NBx Py and
Γ ′ `∗NBx ¬Qz; from the latter, by consistency, Γ ′ 6`∗NBx Qz; so by
assumption, vwy(P) = 1 and vwz(Q) = 0; but since Γ ′ `∗NBx s.y.z,
by construction, 〈ws, wy, wz〉 ∈ R; so by TB(→), vws(P → Q) =

0. This is impossible; reject the assumption: if vws(A) = 1 then
Γ ′ `∗NBx As.
(ii) Suppose Γ ′ `∗NBx As but vws(A) = 0; then Γ ′ `∗NBx (P → Q)s

but vws(P → Q) = 0. From the latter, by TB(→), there are
some wt, wu ∈ W such that 〈ws, wt, wu〉 ∈ R and vwt(P) = 1

but vwu(Q) = 0; so by assumption, Γ ′ `∗NBx Pt and Γ ′ 6`∗NBx Qu;
so by s-maximality, Γ ′ `∗NBx ¬Qu. Since 〈ws, wt, wu〉 ∈ R, by
construction, Γ ′ `∗NBx s.t.u; so by reasoning as follows,
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1 Γ ′

2 (P → Q)s A (c, ¬I)

3 s.t.u from Γ ′

4 Pt from Γ ′

5 Qu 3,2,4→E
6 ¬Qu from Γ ′

7 ¬(P → Q)s 2-6 ¬I

Γ ′ `∗NBx ¬(P → Q)s; so by consistency, Γ ′ 6`∗NBx (P → Q)s. This is
impossible; reject the assumption: if Γ ′ ǸBx As then vws(A) = 1.
So vws(A) = 1 iff Γ ′ `∗NBx As.

(>) As is (P > Q)s. (i) Suppose vws(A) = 1 but Γ ′ 6`∗NBx As; then
vws(P > Q) = 1 but Γ ′ 6`∗NBx (P > Q)s. From the latter, by s-
maximality, Γ ′ `∗NBx ¬(P > Q)s; so, since Γ ′ is a scapegoat set for
>, there is some y such that Γ ′ `∗NBx Ps/y, and Γ ′ `∗NBx ¬Qy; from
the first of these, by construction, 〈ws, wy〉 ∈ RP; and from the
second, by consistency, Γ ′ 6`∗NBx Qy; so by assumption, vwy(Q) =

0; so by TB(>), vws(P > Q) = 0. This is impossible; reject the
assumption: if vws(A) = 1 then Γ ′ `∗NBx As.
(ii) Suppose Γ ′ `∗NBx As but vws(A) = 0; then Γ ′ `∗NBx (P > Q)s

but vws(P > Q) = 0. From the latter, by TB(>), there is a wt

such that 〈ws, wt〉 ∈ RP, and vwt(Q) = 0; so by assumption,
Γ ′ 6`∗NBx Qt; so by s-maximality, Γ ′ `∗NBx ¬Qt. Since 〈ws, wt〉 ∈ RP,
by construction, Γ ′ `∗NBx Ps/t; so by reasoning as follows,

1 Γ ′

2 (P > Q)s A (c, ¬I)

3 Ps/t from Γ ′

4 Qt 2,3 >E
5 ¬Qt from Γ ′

6 ¬(P > Q)s 2-5 ¬I

Γ ′ `∗NBx ¬(P > Q)s; so by consistency, Γ ′ 6`∗NBx (P > Q)s. This is
impossible; reject the assumption: if Γ ′ ǸBx As then vws(A) = 1.
So vws(A) = 1 iff Γ ′ `∗NBx As.

———
For any As, vws(A) = 1 iff Γ ′ `∗NBx As.

L8.9 If Γ0 is consistent, then IBx constructed as above is a Bx interpretation.
In each case, we need to show that relevant constraints are met. Sup-
pose Γ0 is consistent. By L8.7 Γ ′ is a scapegoat set for C9/C10 and C12
in those systems.

(NC) Suppose 〈w0, ws, wt〉 ∈ R; then by construction, Γ ′ `∗NBx 0.s.t; so
by 0E, Γ ′ `∗NBx s ' t; so by construction, ws = wt. Suppose ws =

wt; then by construction, Γ ′ `∗NBx s ' t; so by 0I, Γ ′ `∗NBx 0.s.t;
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so by construction, 〈w0, ws, wt〉 ∈ R. So 〈w0, ws, wt〉 ∈ R iff
ws = wt; and, since N = {w0}, NC is satisfied.

(C8) If C8 is in Bx, then AM8 is in NBx. Suppose 〈ws, wt, wu〉 ∈ R;
then by construction, Γ ′ `∗NBx s.t.u; so by AM8, Γ ′ `∗NBx s.u.t; so by
construction, 〈ws, wu, wt〉 ∈ R; so by construction, 〈ws, w

∗
u, w∗

t〉 ∈
R. So C8 is satisfied.

(C9/10) Suppose there is a wu such that 〈ws, wt, wu〉 ∈ R and 〈wu, wv,

ww〉 ∈ R; then by construction, Γ ′ `∗NBx s.t.u and Γ ′ `∗NBx u.v.w;
so, since Γ ′ is a C9/C10 scapegoat set, there is a y such that
Γ ′ `∗NBx s.v.y and Γ ′ `∗NBx t.y.w, and there is a z such that Γ ′ `∗NBx

t.v.z and Γ ′ `∗NBx s.z.w; so by construction, 〈ws, wv, wy〉 ∈ R,
〈wt, wy, ww〉 ∈ R, 〈wt, wv, wz〉 ∈ R and 〈ws, wz, ww〉 ∈ R. So
C9 and C10 are satisfied.

(C12) Similarly.
(C13) If C13 is in Bx, then AM13 is in NBx. Suppose 〈ws, wt, wu〉 ∈ R

and 〈wu, wv, ww〉 ∈ R; then by construction, Γ ′ `∗NBx s.t.u and
Γ ′ `∗NBx u.v.w; so by AM13, Γ ′ `∗NBx s.v.w; so by construction,
〈ws, wv, ww〉 ∈ R. So C13 is satisfied.

(�) If (�) is in Bx, then AM� is inNBx. (i) Suppose 〈ws, wt, wu〉 ∈ R

and vws(p) = 1; then by construction, Γ ′ `∗NBx s.t.u and Γ ′ `∗NBx ps;
so by AM�, Γ ′ `∗NBx pu; so by construction, vwu(p) = 1. (ii)
Suppose 〈ws, wt, wu〉 ∈ R and vw∗

u
(p) = 1; then by construction,

vwu(p) = 1 so by construction again, Γ ′ `∗NBx s.t.u and Γ ′ `∗NBx pu;
so by AM�, Γ ′ `∗NBx ps; so by construction, vws(p) = 1; and by
construction again, vw∗

s
(p) = 1. So C13 is satisfied.

(1) If condition (1) is in Bx, then AMP1 is in NBx. Suppose wt ∈
fA(w0); then 〈w0, wt〉 ∈ RA; so by construction, Γ ′ `∗NBx A0/t; so
by AMP1, Γ ′ `∗NBx At; so by L8.8, vwt(A) = 1; so wt ∈ [A]. So
fA(w0) ⊆ [A] and (1) is satisfied.

(2) If condition (2) is in Bx, then AMP2 is inNBx. Supposew0 ∈ [A];
then vw0

(A) = 1; so by L8.8, Γ ′ `∗NBx A0; so by AMP2, Γ ′ `∗NBx

A0/0; so by construction, 〈w0, w0〉 ∈ RA; so w0 ∈ fA(w0) and
(2) is satisfied.

M For any ws ∈ W, setm(s) = ws; otherwisem(s) is arbitrary.

L8.10 If Γ0 is consistent, then vm(Γ0) = 1.
Reasoning parallel to that for L2.10 of NKα.

Main result: Suppose Γ |=Bx A but Γ 6 ǸBx A. Then Γ0 |=∗
Bx A0 but Γ0 6`∗NBx A0. By

(DN), if Γ0 `∗NBx ¬¬A0, then Γ0 `∗NBx A0; so Γ0 6`∗NBx ¬¬A0; so by L8.2, Γ0 ∪ {¬A0}

is consistent; so by L8.9 and L8.10, there is a Bx interpretation with v and
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m constructed as above such that vm(Γ0 ∪ {¬A0}) = 1; so vm(0)(¬A) = 1; so
by construction, vm∗

0
(¬A) = 1; so by TB(¬), vm(0)(A) = 0; so vm(Γ0) = 1

and vm(0)(A) = 0; so by VB*, Γ0 6|=∗
Bx A0. This is impossible; reject the

assumption: if Γ |=Bx A, then Γ ǸBx A.

9   : Fnα
Quantifiedmodal logic raises many issues in the metaphysics of possible worlds
and modality. As graphically exhibited by the nineteen (!) branches of a tree
diagram on the second page of Garson’s excellent survey [3], there are many
issues and options for formal logic as well. This last section is a bare intro-
duction to the topic. I exhibit a couple of concerns associated with “variable
domains,” and consider some ways free logic might be adapted in response.
Access is constrained as for normal modal logics from before.
When one moves from ordinary sentential logic to quantified logic, one

moves from a simple interpretation which assigns a truth value to each para-
meter, to interpretations which include a universe of objects, with assignments
to constants and relation symbols. It is natural to think we could do something
similar in the transition from sentential to quantified modal logic. Thus, for
example, we might say an interpretation is 〈W,U,D, R, v〉 where W is a set of
worlds, U a set of objects, D a function from W to subsets of U, R a subset of
W2, and v a function which assigns a member of U to each constant symbol,
and a subset of Un to each n-place relation symbol at each world. Then, intu-
itively, for w ∈ W, D(w) says which things exist in world w. And v says which
things are assigned to constants and to relation symbols at worlds. Thus, we
might have v(b) = Bill, vw(H1) = {Bill, Hill} and vx(H1) = {Hill, Jill}; so that
Hb turns out true at w but false at x – and, depending on access, we could
proceed in the usual way to say that 3Hb at some world, or whatever.
Variable Domains. Here is a first concern: It is natural to think that Bill does

not exist at every world – that D varies from one world to the next. And it is
natural to think that ‘everybody is happy’ should come out true at w just when
all the people at w are happy, and ‘somebody is happy’ should come out true
just when someone atw is happy. For this, for evaluation atw, quantifiers need
to be restricted to the members of D(w). So far, so good. But consider the
following argument, proceeding by standard quantifier rules (with subscripts
applied in the usual way).

1 0.1 A (g, 2I)

2 (b = b)1 =I
3 ∃x(x = b)1 2 ∃I
4 2∃x(x = b)0 1-3 2I

It is thus (apparently) a theorem that Bill exists at every accessible world –
so that Bill turns out to be a necessary being. Theological concerns to the
side, something seems to have gone awry: for we began with precisely the
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assumption that Bill does not exist at every world.
Though its original motivation is not from possible worlds, quantified free

logic is designed to accommodate interpretations with a universe U of objects
greater than the domain D over which quantifiers range. The idea seems to
have been that there are objects which do not exist (Pegasus, or the like).
Whatever sense is to be made of this, from our assumptions, there would seem
to be a straightforward application to the modal context, where Bill is a mem-
ber of some, but not every D. To accommodate this sort of thing, relative to
the classical case, free logic imposes constraints on the quantifier rules. We
may thus introduce a predicate E for existence, with quantifier rules as follows,

∀I Ea

Px/a

∀xP
where a does not appear in any
undischarged premise or assump-
tion or in P

∀E ∀xP

Ea

Px/a

∃I Px/a

Ea

∃xP

∃E ∃xP

Px/a

Ea

Q

Q
where a does not appear in any
undischarged premise or assump-
tion, in P or inQ

Then ∃I in our problematic derivation is blocked, insofar as Eb is not available.
Of course, we might reason along the following lines,

1 0.1 A (g, 2I)

2 Eb1 A (g, ⊃I)

3 (b = b)1 =I
4 ∃x(x = b)1 2,3 ∃I
5 [Eb ⊃ ∃x(x = b)]1 2-4 ⊃I
6 2[Eb ⊃ ∃x(x = b)]0 1-5 2I

for the result that, necessarily, if Bill exists, then something is identical to Bill.
But this seems right. So, subject to details, we seem to have the makings of a
reasonable way out. (Notice that we have already seen a version of free logic
for 2 and 3 as quantifiers over subscripts. Thus, where we see s.t as a sort of
existence claim, these rules for ∀ and ∃ appear as parallel to ones we have seen
for 2 and 3. In the modal case, we require the existence constraint insofar as
the domain of worlds to which a given w has access may turn out to be empty.)
De Re / De Dicto. Much philosophical debate surrounds de re as opposed to

de dicto modality. Formally an expression is de re (of the thing) iff a subformula
of it has a constant or free variable in the scope of a modal operator. And
expression is de dicto (of the saying) iff it is not de re. Thus, for example, 2Hb

and ∃x2Hx are de re; 2∃xHx is de dicto. (Discussion of quantifying in by Quine
and others is of de remodality, insofar as the quantifier reaches across the modal
operator.) Evaluation of 2∃xHx seems straightforward enough: 2∃xHx should
be true just in case there is no accessible w ∈ W such that vw(H) is empty.
But consider 2Hb; this will be true just in case Bill is in the extension of H at
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every accessible world. Similarly, ∃x2Hx will be true at w just in case there is
something in w such that it is in the extension of H at every accessible world.
Perhaps it is intuitive that a given thing could have been different ways, and so
appears in different worlds. Even so, there are serious philosophical questions
about how a thing has its modal features, and so appears in the worlds it does.8
Suppose we allow that a thing may appear in different worlds. As soon as

we set things up this way, another problem emerges for variable domains. We
have said that 2Hb will be true just in case Bill is in the extension of H at
every accessible world. But Bill does not exist at every accessible world – and
how are we to evaluate Hb at worlds where Bill does not exist (and similarly
for ∃xHx)? Here are three responses: (i) A standard response, perhaps because
it is technically straightforward, is to say that non-existence at a world need
not prevent a thing’s being in the extension of a predicate there – to let vw(H)

be any subset of U. Another reaction is to deny that an object can be in the
extension of (ordinary) predicates at a world where it does not exist – this is
to restrict vw(H) to subsets of D(w). Then (iia) we might let Hb be false at
worlds where Bill does not exist. Alternatively, (iib), along lines from previous
sections, we might say Hb is neither true nor false at worlds where Bill does
not exist. Options (iia) and (iib) seem compatible with “serious actualism” as
defended by Alvin Plantinga, though (iia) is like the one he explicitly endorses.9
In the following, I develop a version of free quantified modal logic compatible
with any of these options – and fairly fine-grained combinations of them as
well. If options are limited to just (i), or to just (i) and (iia), the logic remains
classical, and obvious simplifications are possible. It is left as an exercise to
work out the details of such simplifications.

9.1  /  
LFα The  consists of variables x1, x2 . . . ; constants c1, c2 . . . ;

operators ¬, ∧, ∀, 2; and relation symbols, E, =, R1
1, R1

2 . . . , R2
1, R2

2 . . . ,
etc. The number of “places” in a relation symbol is indicated by super-
script, where ‘=’ is always two-place, and ‘E’ one-place. Any variable or
constant is a . If Qnt1 . . . tn is a n-place relation symbol followed
by n terms, it is a . If x is a variable and A and B are formulas,
then ¬A, (A ∧ B), ∀xA and 2A are formulas. Variables are bound and
free in the usual way. A is a  iff it is a formula with no free
variables. We allow overlines as before, and the usual abbreviations,
including ∨, ⊃, ≡, ∃, and 3.

IFα An  is 〈W,U,D, R, P, v〉 where W is a set of worlds,
U a set of objects, D a function from W to subsets of U, R a subset of
W2, and v a function such that for any constant c, v(c) ∈ U and for

8The literature is immense. Quine’s [7] is a classic. For a contribution of my own, see [10].
9See, e.g., [5]. But compare his [6, n.3]
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any n-place relation symbol Qn and w ∈ W, vw(Qn) ⊆ Un. P is a
function that maps each n-place relation symbol Qn to some member
of {0, 1, 2}n; so, for example, Pmight map someQ4 to 〈1, 0, 0, 2〉. Where
P(Qn) = 〈a1 . . . an〉, say P(Qn)i = ai. Then we require as an existence
(presupposition) requirement on v that,

EP If 〈u1 . . . un〉 ∈ vw(Qn), then for any i, 1 6 i 6 n, if P(Qn)i > 1,
then ui ∈ D(w)

Additionally, require that P(E) = 〈0〉 and vw(E) = D(w); if P(=) = 〈0, 0〉,
then vw(=) = {〈u, u〉|u ∈ U}, and otherwise vw(=) = {〈u, u〉|u ∈ D(w)}.
In addition, where α is empty or some combination of the following,

η For any x, there is a y such that xRy extendability
ρ for all x, xRx reflexivity
σ for all x, y, if xRy then yRx symmetry
τ for all x, y, z, if xRy and yRz then xRz transitivity
and, as sample versions of the presupposition constraint, where n is one
of the following,

(0) For any relation symbol Qn and any i, 1 6 i 6 n, P(Qn)i = 0

(1) For any relation symbol Qn other than E and any i, 1 6 i 6 n,
P(Qn)i = 1

(2) For any relation symbol Qn other than E and any i, 1 6 i 6 n,
P(Qn)i = 2

〈W,U,D, R, P, v〉 is an Fnα interpretation when R meets the constraints
from α, and P meets the constraint from n. Obviously, many other
options are available for the constraints α and n.
Given an interpretation with its P and v, say 〈u1 . . . un〉 ∈ vw(Qn) just
in case either 〈u1 . . . un〉 ∈ vw(Qn) or for some i, 1 6 i 6 n, P(Qn)i = 2

and ui 6∈ D(w). When n = 0 or n = 1, vw(Qn) is the same as vw(Qn).
But when n = 2, for relation symbols other than E, vw(Qn) includes
also any n-tuple with a member not in D(w).
A variable designation assignment δ assigns each variable a member of
U; δ[x|u] is like δ except that x is assigned to u; corresponding to a
variable assignment δ (δ[x|u]) the term assignment ∆ (∆[x|u]) is like δ

(δ[x|u]) for variables, and v for constants. As before, define a function h

based on v, writing hw(/A/)//δ = 1 to indicate that /A/ is  at
w on h with variable assignment δ.

HF For assignments to formulas,

(R) hw(/Qnt1 . . . tt/)//δ = 1 if 〈∆(t1) . . . ∆(t2)〉 ∈ /v/w(Qn), and 0

otherwise.
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(¬) hw(/¬A/)//δ = 1 if hw(\A\)//δ = 0, and 0 otherwise.
(∧) hw(/A ∧ B/)//δ = 1 if hw(/A/)//δ = 1 and hw(/B/)//δ = 1, and 0

otherwise.
(∀) hw(/∀xA/)//δ = 1 if for any u ∈ D(w), hw(/A/)//δ[x|u] = 1, and

0 otherwise.
(2) hw(/2A/)//δ = 1 if all x ∈ W such that wRx have hx(/A/)//δ =

1, and 0 otherwise.

hw(/A/) = 1 (/A/ holds on h atw) iff for any δ, hw(/A/)//δ = 1. And hw(Γ) = 1

iff for each /A/ ∈ Γ , hw(/A/) = 1. Then, where the members of Γ and A are
sentences,

VFα Γ |=Fnα
/A/ iff there is no Fnα interpretation 〈W,U,D, R, P, v〉 and w ∈

W such that hw(Γ) = 1 and hw(/A/) = 0.

Set relation symbol E to the side: Then for F0α and F1α, we have hw(/Qnt1

. . . tn/)//δ = 1 iff 〈∆(t1) . . . ∆(tn)〉 ∈ vw(Qn) – where, for F1α each of ∆(t1)

. . . ∆(tn) is required to be inD(w). For F2α, hw(Qnt1 . . . tn)//δ = 1 if and only
if 〈∆(t1) . . . ∆(tn)〉 ∈ vw(Qn) – where again, each of ∆(t1) . . . ∆(tn) is required
to be in D(w); but hw(Qnt1 . . . tn)//δ = 0 iff 〈∆(t1) . . . ∆(tn)〉 6∈ vw(Qn) and
each of ∆(t1) . . . ∆(tn) is in D(w). So P works as an existence presupposition
function for (each place of ) each relation symbol: on the F0α option, there are
no existence presuppositions; on the F1α option, there is an existence require-
ment for truth but not falsity; with F2α, there is an existence requirement for
both truth and falsity. Insofar as truth and non-falsity are matched for the F0α
and F1α options, the logic is essentially classical. However, for F2α, since ex-
pressions may be neither true nor false (but never both), the logic is like MK3

from section 6.
As an example of reasoning with these definitions, here is an argument to

show, ∃y3¬Ey |=F1α ¬∀x2Hx. We suppose derived clauses to HF are spelled
out in the usual way.

Suppose ∃y3¬Ey 6|=F1α ¬∀x2Hx; then by VFα there is an F1α inter-
pretation 〈W,U,D, R, P, v〉 and w ∈ W such that hw(∃y3¬Ey) = 1 but
hw(¬∀x2Hx) = 0; from the latter, there is a δ where hw(¬∀x2Hx)//δ =

0; then with the former, hw(∃y3¬Ey)//δ = 1. From this, by HF(∃),
there is some u ∈ D(w) such that hw(3¬Ey)//δ[y|u] = 1; so by HF(3),
there is some a ∈ W such that wRa and ha(¬Ey)//δ[y|u] = 1; so by
HF(¬), ha(Ey)//δ[y|u] = 0; so by HF(R), ∆[y|u](y) 6∈ va(E); so by
the construction of v, ∆[y|u](y) 6∈ va(E); so ∆[y|u](y) 6∈ D(a); but
∆[y|u](y) = δ[y|u](y) = u; so u 6∈ D(a). Since hw(¬∀x2Hx)//δ =

0, by HF(¬), hw(∀x2Hx)//δ = 1; so by HF(∀), for any v ∈ D(w),
hw(2Hx)//δ[x|v] = 1; so hw(2Hx)//δ[x|u] = 1; so by HF(2), for any
b ∈ W such that wRb, hb(Hx)//δ[x|u] = 1; so ha(Hx)//δ[x|u] = 1; so by
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HF(R), ∆[x|u](x) ∈ va(H); so, since this is F1α, ∆[x|u](x) ∈ va(H); so by
EP, ∆[x|u](x) ∈ D(a); but ∆[x|u](x) = δ[x|u](x) = u; so u ∈ D(a). This
is impossible; reject the assumption: ∃y3¬Ey |=F1α ¬∀x2Hx.

The argument does not go through in F0α insofar as we cannot move by EP
from ∆[x|u](x) ∈ va(H) to ∆[x|u](x) ∈ D(a). It does not go through in F2α be-
cause we cannot move from ∆[x|u](x) ∈ va(H) to ∆[x|u](x) ∈ va(H). However,
as one can show by parallel reasoning, ∃y3¬Ey |=F2α ¬∀x2Hx.

9.2  : NFnα
Allow expressions with integer subscripts and overlines and, as before, expres-
sions of the sort, s.t. Begin with a natural combination of rules from free logic
with ones we have seen before, where rules for ∨, ⊃, ≡, ∃ and 3 are derived.

R /P/s

/P/s

¬I /P/s

//Q//t

\\¬Q\\t

\¬P\s

¬E /¬P/s

//Q//t

\\¬Q\\t

\P\s

∧I /P/s

/Q/s

/P ∧ Q/s

∧E /P ∧ Q/s

/P/s

∧E /P ∧ Q/s

/Q/s

∨I /P/s

/P ∨ Q/s

∨I /P/s

/Q ∨ P/s

⊃I /P/s

\Q\s

\P ⊃ Q\s

⊃E \P ⊃ Q\s

/P/s

\Q\s

∨E /P ∨ Q/s

/P/s

//R//t

/Q/s

//R//t

//R//t

≡I /P/s

\Q\s

/Q/s

\P\s

\P ≡ Q\s

≡E \P ≡ Q\s

/P/s

\Q\s

≡E \P ≡ Q\s

/Q/s

\P\s
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∀I Eas

//Px/a//s

//∀xP//s

where a does not appear in any
undischarged premise or assump-
tion or in P

∀E //∀xP//s

Eas

//Px/a//s

∃I //Px/a//s

Eas

//∃xP//s

∃E //∃xP//s

//Px/a//s

Eas

/Q/u

/Q/u

where a does not appear in any
undischarged premise or assump-
tion, in P or inQ

2I s.t

/P/t

/2P/s

where t does not appear in any
undischarged premise or assump-
tion

2E /2P/s

s.t

/P/t

3I /P/t

s.t

/3P/s

3E /3P/s

s.t

/P/t

//Q//u

//Q//u

where t does not appear in any
undischarged premise or assump-
tion and is not u

AMη s.t

/P/u

/P/u

where t does not appear in any
undischarged premise or assump-
tion and is not u

AMρ

s.s

AMσ s.t

t.s

AMτ s.t

t.u

s.u

Every subscript is 0, appears in a premise, or in the t place of an assumption
for 2I, 3E or AMη. Now, for relation symbol Qn, let P1[Qnt1 . . . tn]s be the
conjunction (> ∧ Eta ∧ · · · ∧ Etb)s for each ti such that P(Qn)i > 1. And let
P2[Qnt1 . . . tn]s be the conjunction (>∧Eta ∧ · · ·∧Etb)s for each ti such that
P(Qn)i = 2. Note that >s can be asserted at any stage in a derivation. Then
allow,

D Ps

Ps

=I P1[a = a]s

(a = a)s

=E (a = b)s (b = a)s

//Q//t //Q//t

//Qa/b//t //Qa/b//t

a single instance of a replaced by b

P1I Qs

P1[Q]s

P2I ¬Qs

P2[Q]s

P2E P2[Q]s

Qs

Qs

Where for =E, P1I, P2I and P2E, Q is an atomic, Rna1 . . . an.

Notice that P2E is a constrained version of (U) from section 6. Informally,
where P1[Qnt1 . . . tn]s or P2[Qnt1 . . . tn]s is other than just>, let us drop> for
the equivalent conjunction. Then, in any case, P1(E) = P2(E) = >. Otherwise,
in NF0α, P1[Qnt1 . . . tn] = P2[Qnt1 . . . tn] = >. In NF1α, P1[Qnt1 . . . tn] =
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Et1 ∧ · · · ∧ Etn and P2[Qnt1 . . . tn] = >. In NF2α, we have P1[Qnt1 . . . tn] =

P2[Qnt1 . . . tn] = Et1∧· · ·∧Etn. When P1[Qnt1 . . . tn] = >, the premise for =I
goes trivial, as does the conclusion from P1I. Similarly, when P2[Qnt1 . . . tn] =

>, the conclusion of P2I is trivial, and P2E works like (U) for the relevant
atomic. Where the members of Γ and /A/ are sentences without subscripts,
let Γ0 be the members of Γ , each with subscript 0. Then,

NFα Γ ǸFnα
/A/ iff there is an NFnα derivation of /A/0 from the members

of Γ0.

Notice that our notions of validity are defined for sentences. We get the dif-
ferent derivation systems insofar as AM rules may differ, and insofar as P1[Q]

and P2[Q] are different expressions. On occasion, arguments will go through
no matter what presupposition constraints are in play. In this case, to show
Γ ǸFnα

/A/, apply the rules so that they would apply no matter what the con-
straints are. Thus apply =I and P2E as though P(Qn)i is always 2, and P1I and
P2I as though it is 0 (so the latter two rules effectively drop out).
As above, rules for ∨, ⊃, ≡, ∃ and 3 are derived. As examples, here are

derivations for ∃I and ∃E.

∃I

1 //Px/a//s P
2 Eas P
3 \\∀x¬P\\s A (c, ¬I)

4 \\¬Px/a\\s 2,3 ∀E
5 //Px/a//s 1 R
6 //¬∀x¬P//s 3-5 ¬I
7 //∃xP//s 6 abv

∃E

1 //∃xP//s P
2 //¬∀x¬P//s 1 abv
3 \¬Q\u A (c, ¬E)

4 Eas A (g, ∀I)

5 //Px/a//s A (c, ¬I)

... with 1,4,5
6 /Q/u as for ∃E
7 \¬Q\u 3 R
8 \\¬Px/a\\s 5-7 ¬I
9 \\∀x¬P\\s 4-8 ∀I
10 //¬∀x¬P//s 2 R
11 /Q/u 3-10 ¬E

In addition, we allow standard two-way rules (including MN) with overlines
and subscripts constant throughout. Include among two-way rules,

QN /∀xP/s / . /¬∃x¬P/s /¬∀xP/s / . /∃x¬P/s

/∃xP/s / . /¬∀x¬P/s /¬∃xP/s / . /∀x¬P/s

Allow MT, NB and DS in the forms,

MT /P ⊃ Q/s

\¬Q\s

/¬P/s

NB /P ≡ Q/s /P ≡ Q/s

\¬P\s \¬Q\s

/¬Q/s /¬P/s

DS /P ∨ Q/s /P ∨ Q/s

\¬P\s \¬Q\s

/Q/s /P/s
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As further examples, here are some simple results emphasizing behavior
for existence and identity.

a = b ǸF0α 2(a = b)

1 (a = b)0 P

2 0.1 A (g, 2I)

3 >1 taut
4 (a = a)1 3 =I
5 (a = b)1 1,3 =E
6 2(a = b)0 2-5 2I

In NF0α, the premise for =I is trivial. Notice that this derivation does not
go through for NF1α and NF2α, where =I requires a substantive premise. As
above, we may, however show the following (and similarly for NF2α),

a = b ǸF1α 2[Ea ⊃ (a = b)]

1 (a = b)0 P

2 0.1 A (g, 2I)

3 Ea1 A (g, ⊃I)

4 >1 taut
5 Ea1 3,4 P2E
6 (Ea ∧ Ea)1 5,5 ∧I
7 (a = a)1 6 =I
8 (a = b)1 1,7 =E
9 [Ea ⊃ (a = b)]1 3-8 ⊃I
10 2[Ea ⊃ (a = b)]0 2-9 2I

The premise for P2E is trivial, as always for relation symbol E. But the premise
for =I is not. In this case, the terms are the same so, following the rule (but
dropping >), the required premise is obtained at (6). In these systems, then, if
a is equal to b, a is essentially equal to b.
Here is a case considered semantically above,
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∃y3¬Ey ǸF1α ¬∀x2Hx

1 ∃y3¬Ex0 P

2 3¬Ea0 A (g, 1 ∃E)
3 Ea0

4 0.1 A (g, 2 3E)
5 ¬Ea1

6 ∀x2Hx0 A (g, ¬I)

7 2Ha0 6,3 ∀E
8 Ha1 4,7 2E
9 >1 taut
10 Ha1 8,9 P2E
11 Ea1 10 P1I
12 ¬Ea1 5 D
13 ¬∀x2Hx0 6-12 ¬I
14 ¬∀x2Hx0 2,4-13 3E
15 ¬∀x2Hx0 1,2-14 ∃E

Notice that, in NF2α we would not have (10) since we do not have Ea1. And
in NF0α, (10) would get us just >1 instead of Ea1 (again with > dropped) and
we would not have the contradiction. As in the semantic case, though, we can
show,

∃y3¬Ey ǸF2α ¬∀x2Hx

1 ∃y3¬Ex0 P

2 3¬Ea0 A (g, 1 ∃E)
3 Ea0

4 0.1 A (g, 2 3E)
5 ¬Ea1

6 ∀x2Hx0 A (g, ¬I)

7 2Ha0 6,3 ∀E
8 Ha1 4,7 2E
9 Ea1 8 P1I
10 ¬Ea1 5 D
11 ¬∀x2Hx0 6-10 ¬I
12 ¬∀x2Hx0 2,4-11 3E
13 ¬∀x2Hx0 1,2-12 ∃E

When there is a world where some a does not exist, on F1α, we can be sure
that atomics go false for the thing at that world, so that the 2 goes false as well.
On F2α, we can be sure that atomics are not true for the thing at that world,
so that 2 is not true either. On F0α, there are no immediate consequences,
insofar as atomics might go either way for the thing at that world.
Insofar as there is no parallel discussion for quantifiedmodal logic in Priest’s

text, the following are offered as exercises which the student may find useful.

1. Produce an interpretation to show that, for any n, 6|=Fnρστ ∀x2Qx ⊃ 2∀xQx.
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2. Produce an interpretation to show that, for any n, 6|=Fnρστ 2∀xQx ⊃ ∀x2Qx.

3. The formulas in (1) and (2) are instances of the Barcan formula and converse
Barcan formula respectively (after Ruth Barcan Marcus). They play an im-
portant role in discussions of quantified modal logic, especially related to
issues with which we began. Show that the formulas are valid in a system
Fnc which is like Fnρστ except that it includes the constraint (c) that for
any a, b ∈ W, D(a) = D(b).

4. Give derivations to show each of the following.

a. 2∀xAx ǸFnα ∀x2(Ex ⊃ Ax)

b. ∃x∀y2Axy ǸF1α 2∃x∃yAxy

c. ǸFnρ ∀x2(Ax ∧ Bx) ⊃ ∀yAy

d. ǸFnα (3∀xAx ∧ 2∃xBx) ⊃ 3∃x(Ax ∧ Bx)

e. ǸFnα 2∀x(Ax ∨ Bx) ⊃ (2∀xAx ∨ 3∃xBx)

f. ǸF1α (3∃x2Ax ∧ 2∀x3Bx) ⊃ 3∃x3(Ax ∧ Bx)

g. ∀x¬3Ax ⊃ 2∀x¬Ax ǸFnα 3∃xAx ⊃ ∃x3Ax

h. 3∃xAx ⊃ ∃x3Ax ǸFnα ∀x¬3Ax ⊃ ¬3∃xAx

i. ∃x3¬Ax ǸF2α 3∃x¬Ax

j. ǸF0α ∀x2(Ax ∨ ¬Ax)

5. (i) Suppose no P(Qn)i = 2. Provide a revised version of our derivation
rules which takes advantage of this simplification. Hint: it is possible to
do away with overlines altogether. Why? (ii) Suppose P(Qn)i is always
0. Provide a version of our derivation rules which takes advantage of this
additional simplification.

9.3   
Preliminaries: Begin with generalized notions of validity. Given any model
〈W,U,D, R, P, v〉, let m be a map from subscripts into W. Then say 〈W,U,

D, R, P, v〉m is 〈W,U,D, R, P, v〉 with map m. Then, where Γ is a set of ex-
pressions of our language for derivations, hm(Γ) = 1 iff for each /A/s ∈ Γ ,
hm(s)(/A/) = 1 and for each s.t ∈ Γ , 〈m(s),m(t)〉 ∈ R. Now expand notions of
validity for subscripts, and alternate expressions as indicated in double brack-
ets. Where the formulas in Γ and A are sentences,

VFα* Γ |=∗
Fnα

/A/s [[s.t]] iff there is no Fnα interpretation 〈W,U,D, R, P, v〉m
such that hm(Γ) = 1 but hm(s)(/A/) = 0 [[〈m(s),m(t) 6∈ R]].

NFα* Γ `∗NFnα
/A/s [[s.t]] iff there is an NFnα derivation of /A/s [[s.t]] from

the members of Γ .
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These notions reduce to the standard ones when all the members of Γ and
A have subscript 0. As usual, for the following, cases omitted are left to the
reader.

 9.1 NFnα is sound: If Γ ǸFnα
/A/ then Γ |=Fnα

/A/.

L9.1 If Γ ⊆ Γ ′ and Γ |=∗
Fnα

/P/s [[s.t]], then Γ ′ |=∗
Fnα

/P/s [[s.t]].

L9.2 If δ and δ′ agree on their assignments to variables free in /P/ then
hw(/P/)//δ = hw(/P/)//δ′.

L9.3 If v and v′ differ at most in assignments to terms that do not occur
in /P/, then for the corresponding h and h′, hw(/P/)//δ = h′w(/P/)//δ.
Corollary: hw(/P/) = h′w(/P/).

L9.4 If ∆(a) = u, then hw(\Px/a\)//δ = hw(\P\)//δ[x|u].
Demonstrations for L9.1 - L9.4 are all on the model of parallel results
from classical logic.

Main result: For each line in a derivation let Pi be the expression on line i and Γi

be the set of all premises and assumptions whose scope includes line i. We set
out to show “generalized” soundness: if Γ `∗NFnα P then Γ |=∗

Fnα P. As above, this
reduces to the standard result when P and all the members of Γ are without
overlines and have subscript 0. Suppose Γ `∗NFnα P. Then there is a derivation of
P from premises in Γ where P appears under the scope of the premises alone.
By induction on line number of this derivation, we show that for each line i of
this derivation, Γi |=∗

Fnα Pi. The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumption /A/s [[s.t]]. Then Γ1 = {/A/s} [[{s.t}]];
so for any 〈W,U,D, R, P, v〉m, we have hm(Γ1) = 1 iff hm(s)(/A/) = 1

[[〈m(s),m(t)〉 ∈ R]]; so there is no 〈W,U,D, R, P, v〉m where hm(Γ1) = 1

but hm(s)(/A/) = 0 [[〈m(s),m(t)〉 6∈ R]]. So by VFα*, it follows that
Γ1 |=∗

Fnα
/A/s [[s.t]], where this is just to say, Γ1 |=∗

Fnα P1.

Assp: For any i, 1 6 i < k, Γi |=∗
Fnα Pi.

Show: Γk |=∗
Fnα Pk.

Pk is either a premise, an assumption, or arises from previous lines by R,
∧I, ∧E, ¬I, ¬E, ∀I, ∀E, 2I, 2E, D, =I, =E, P1I, P2I, P2E or, depending
on the system, AMη, AMρ, AMσ, or AMτ. If Pk is a premise or an
assumption, then as in the basis, Γk |=∗

Fnα Pk. So suppose Pk arises by
one of the rules.

(R)
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(∧I) If Pk arises by ∧I, then the picture is like this,

i /A/s

j /B/s

k /A ∧ B/s

where i, j < k and Pk is /A ∧ B/s. By assumption, Γi |=∗
Fnα

/A/s and
Γj |=∗

Fnα
/B/s; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by

L9.1, Γk |=∗
Fnα

/A/s and Γk |=∗
Fnα

/B/s. Suppose Γk 6|=∗
Fnα

/A ∧ B/s; then
by VFα*, there is an Fnα interpretation 〈W,U,D, R, P, v〉m such that
hm(Γk) = 1 but hm(s)(/A ∧ B/) = 0. From the latter, there is a δ such
that hm(s)(/A∧B/)//δ = 0. From the former, by VFα*, hm(s)(/A/) =

1 and hm(s)(/B/) = 1; so hm(s)(/A/)//δ = 1 and hm(s)(/B/)//δ = 1;
so by HF(∧), hm(s)(/A ∧ B/)//δ = 1. This is impossible; reject the
assumption: Γk |=∗

Fnα
/A ∧ B/s, which is to say, Γk |=∗

Fnα Pk.

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,
/A/s

i //B//t

j \\¬B\\t

k \¬A\s

where i, j < k and Pk is \¬A\s. By assumption, Γi |=∗
Fnα

//B//t and Γj |=∗
Fnα

\\¬B\\t; but by the nature of access, Γi ⊆ Γk ∪ {/A/s} and Γj ⊆ Γk ∪
{/A/s}; so by L9.1, Γk ∪ {/A/s} |=∗

Fnα
//B//t and Γk ∪ {/A/s} |=∗

Fnα
\\¬B\\t.

Suppose Γk 6|=∗
Fnα

\¬A\s; then by VFα*, there is an Fnα interpretation
〈W,U,D, R, P, v〉m such that hm(Γk) = 1 but hm(s)(\¬A\) = 0; from
the latter, there is some δ such that hm(s)(\¬A\)//δ = 0; so by HF(¬),
hm(s)(/A/)//δ = 1; but a derivation is a sequence of sentences; so ¬A

and so A have no free variables; so by L9.2, for any δ′, hm(s)(/A/)//δ′ =

1; so hm(s)(/A/) = 1; so hm(Γk) = 1 and hm(s)(/A/) = 1; so hm(Γk ∪
{/A/s}) = 1; so by VFα*, hm(t)(//B//) = 1 and hm(t)(\\¬B\\) = 1;
so for any δ, hm(t)(//B//)//δ = 1 and hm(t)(\\¬B\\)//δ = 1; from the
latter, by HF(¬), hm(t)(//B//)//δ = 0. This is impossible; reject the
assumption: Γk |=∗

Fnα
\¬A\s, which is to say, Γk |=∗

Fnα Pk.

(¬E)

(∀I) If Pk arises by ∀I, then the picture is like this,

Eas

i //Ax/a//s

k //∀xA//s
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where i < k, a does not appear in any member of Γk (in any undis-
charged premise or assumption) or in A, and Pk is //∀xA//s. By assump-
tion, Γi |=∗

Fnα
//Ax/a//s; but by the nature of access, Γi ⊆ Γk ∪ {Eas}; so

by L9.1, Γk ∪ {Eas} |=∗
Fnα

//Ax/a//s. Suppose Γk 6|=∗
Fnα

//∀xA//s; then by
VFα*, there is an Fnα interpretation I = 〈W,U,D, R, P, v〉m such that
hm(Γk) = 1 but hm(s)(//∀xA//) = 0; from the latter, there is some δ such
that hm(s)(//∀xA//)//δ = 0; so by HF(∀), there is some u ∈ D(m(s))

such that hm(s)(//A//)//δ[x|u] = 0. Let I′ = 〈W,U,D, R, P, v′〉m be like
I except that v′(a) = u. Then since a does not occur in Γk, by the
corollary to L9.3, it remains that h′m(Γk) = 1; and since u ∈ D(m(s)),
and v′(a) = u, v′(a) ∈ D(m(s)); so for arbitrary δ′, ∆′(a) ∈ D(m(s));
so ∆′(a) ∈ v′m(s)(E); so by HF(R), h′m(s)(Ea)//δ′ = 1; and since δ′

is arbitrary, h′m(s)(Ea) = 1; so h′m(Γk ∪ {Eas}) = 1; so by VFα*,
h′m(s)(

//Ax/a//) = 1; so h′m(s)(
//Ax/a//)//δ = 1; but ∆(a) = v′(a) = u;

so by L9.4, h′m(s)(
//A//)//δ[x|u] = 1; so, since a does not occur in A, by

L9.3, hm(s)(//A//)//δ[x|u] = 1. This is impossible; reject the assumption:
Γk |=∗

Fnα
//∀xA//s, which is to say, Γk |=∗

Fnα Pk.

(∀E) If Pk arises by ∀E, then the picture is like this,

i //∀xA//s

j Eas

k //Ax/a//s

where i, j < k and Pk is //Ax/a//s. By assumption, Γi |=∗
Fnα

//∀xA//s

and Γj |=∗
Fnα Eas; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so

by L9.1, Γk |=∗
Fnα

//∀xA//s and Γk |=∗
Fnα Eas. Suppose Γk 6|=∗

Fnα
//Ax/a//s;

then by VFα*, there is an Fnα interpretation 〈W,U,D, R, P, v〉m such
that hm(Γk) = 1 but hm(s)(//Ax/a//) = 0. From the latter, there is
a δ such that hm(s)(//Ax/a//)//δ = 0. With the former, by VFα*,
hm(s)(//∀xA//) = 1 and hm(s)(Ea) = 1; from the second of these,
hm(s)(Ea)//δ = 1; so by HF(R), ∆(a) ∈ vm(s)(E); so ∆(a) ∈ D(m(s));
say ∆(a) = u; then u ∈ D(m(s)). Since hm(s)(//∀xA//) = 1, we have
hm(s)(//∀xA//)//δ = 1; so by HF(∀), for any v ∈ D(m(s)), hm(s)(//A//)//

δ[x|v] = 1; it follows that hm(s)(//A//)//δ[x|u] = 1; so since ∆(a) = u, by
L9.4, hm(s)(//Ax/a//)//δ = 1. This is impossible; reject the assumption:
Γk |=∗

Fnα
//Ax/a//s, which is to say, Γk |=∗

Fnα Pk.

(2I) If Pk arises by 2I, then the picture is like this,

s.t

i /A/t

k /2A/s

where i < k, t does not appear in any member of Γk (in any undischarged
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premise or assumption), and Pk is /2A/s. By assumption, Γi |=∗
Fnα

/A/t;
but by the nature of access, Γi ⊆ Γk∪{s.t}; so by L9.1, Γk∪{s.t} |=∗

Fnα
/A/t.

Suppose Γk 6|=∗
Fnα

/2A/s; then by VFα*, there is an Fnα interpretation
〈W,U,D, R, P, v〉m such that hm(Γk) = 1 but hm(s)(/2A/) = 0; from the
latter, there is some δ such that hm(s)(/2A/)//δ = 0; so by HF(2), there
is some w ∈ W such thatm(s)Rw and hw(/A/)//δ = 0. Now consider a
mapm′ likem except thatm′(t) = w, and consider 〈W,U,D, R, P, v〉m′ ;
since t does not appear in Γk, it remains that hm′(Γk) = 1; and since
m′(t) = w and m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so hm′(Γk ∪ {s.t}) = 1;
so by VFα*, hm′(t)(/A/) = 1; so hm′(t)(/A/)//δ = 1. But m′(t) = w;
so hw(/A/)//δ = 1. This is impossible; reject the assumption: Γk |=∗

Fnα

/2A/s, which is to say, Γk |=∗
Fnα Pk.

(2E) If Pk arises by 2E, then the picture is like this,

i /2A/s

j s.t

k /A/t

where i, j < k and Pk is /A/t. By assumption, Γi |=∗
Fnα

/2A/s and Γj |=∗
Fnα

s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L9.1, Γk |=∗
Fnα

/2A/s and Γk |=∗
Fnα s.t. Suppose Γk 6|=∗

Fnα
/A/t; then by VFα*, there

is an Fnα interpretation 〈W,U,D, R, P, v〉m such that hm(Γk) = 1 but
hm(t)(/A/) = 0. From the latter, there is a δ such that hm(t)(/A/)//δ =

0. With the former, by VFα*, hm(s)(/2A/) = 1 and 〈m(s),m(t)〉 ∈ R;
from the first of these, hm(s)(/2A/)//δ = 1; so by HF(2), for any w ∈
W such that m(s)Rw, hw(/A/)//δ = 1; so hm(t)(/A/)//δ = 1. This is
impossible; reject the assumption: Γk |=∗

Fnα
/A/t, which is to say, Γk |=∗

Fnα

Pk.

(D) If Pk arises by D, then the picture is like this,

i As

k As

where i < k and Pk is As. By assumption, Γi |=∗
Fnα As; but by the

nature of access, Γi ⊆ Γk; so by L9.1, Γk |=∗
Fnα As. Suppose Γk 6|=∗

Fnα As;
then by VFα*, there is an Fnα interpretation 〈W,U,D, R, P, v〉m such
that hm(Γk) = 1 but hm(s)(A) = 0. From the latter, there is a δ such
that hm(s)(A)//δ = 0. With the former, by VFα*, hm(s)(A) = 1; so
hm(s)(A)//δ = 1. But for these interpretations, there is no formula A

and w ∈ W such that hw(A)//δ = 1 and hw(A)//δ = 0.

Basis: Suppose A is an atomic Qnt1 . . . tn, and for some w ∈ W and
δ, hw(A)//δ = 1; then hw(Qnt1 . . . tn)//δ = 1; so by HF(R),

“Natural Derivations for Priest, An Introduction to Non-Classical Logic”, Australasian Journal of Logic (5) 2006, 47–192

http://www.philosophy.unimelb.edu.au/ajl/2006
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2006 179

〈∆(t1) . . . ∆(tn)〉 ∈ vw(Qn); so by the construction of v, 〈∆(t1)

. . . ∆(tn)〉 ∈ vw(Qn); so by HF(R), hw(Qnt1 . . . tn)//δ = 1; so
hw(A)//δ = 1.

Assp: For any i, 0 6 i < k, if A has i operators, and for some w ∈ W

and δ, hw(A)//δ = 1, then hw(A)//δ = 1.
Show: If A has k operators, and for some w ∈ W and δ, hw(A)//δ = 1,

then hw(A)//δ = 1.
If A has k operators, then A is of the form, ¬P, P ∧ Q, 2P, or
∀xP, where P and Q have < k operators.

(¬) Suppose A is ¬P and for some w ∈ W and δ, hw(A)//δ = 1; then
hw(¬P)//δ = 1; so by HF(¬), hw(P)//δ = 0; so by assumption,
hw(P)//δ = 0; so by HF(¬), hw(¬P)//δ = 1; so hw(A)//δ = 1.

(∧) Suppose A is P ∧ Q and for some w ∈ W and δ, hw(A)//δ =

1; then hw(P ∧ Q)//δ = 1; so by HF(∧), hw(P)//δ = 1 and
hw(Q)//δ = 1; so by assumption, hw(P)//δ = 1 and hw(Q)//δ =

1; so by HF(∧), hw(P ∧ Q)//δ = 1; so hw(A)//δ = 1.
(2) Suppose A is 2P and for some w ∈ W and δ, hw(A)//δ = 1

but hw(A)//δ = 0; then hw(2P)//δ = 1 but hw(2P)//δ = 0;
from the latter, by HF(2), there is an a ∈ W such that wRa

and ha(P)//δ = 0; so by assumption, ha(P)//δ = 0; so by HF(2),
hw(2P)//δ = 0. This is impossible; reject the assumption: if
hw(A)//δ = 1 then hw(A)//δ = 1.

(∀) Suppose A is ∀xP and for some w ∈ W and δ, hw(A)//δ = 1

but hw(A)//δ = 0; then hw(∀xP)//δ = 1 but hw(∀xP)//δ = 0;
from the latter, by HF(∀), there is some u ∈ D(w) such that
hw(P)//δ[x|u] = 0; so by assumption, hw(P)//δ[x|u] = 0; so by
HF(∀), hw(∀xP)//δ = 0. This is impossible; reject the assump-
tion: if hw(A)//δ = 1 then hw(A)//δ = 1.

———
For any A, if for some w ∈ W and δ, hw(A)//δ = 1, then hw(A)//δ = 1.
So, returning to the main case, hm(s)(A)//δ = 1. This is impossible;
reject the assumption: Γk |=∗

Fnα As, which is to say, Γk |=∗
Fnα Pk.

(=I) If Pk arises by =I, then the picture is like this,

i P1[a = a]s

k (a = a)s

where i < k and Pk is (a = a)s. By assumption, Γi |=∗
Fnα P1[a = a]s;

but by the nature of access, Γi ⊆ Γk; so by L9.1, Γk |=∗
Fnα P1[a = a]s.

Suppose Γk 6|=∗
Fnα (a = a)s; then by VFα*, there is an Fnα interpret-

ation 〈W,U,D, R, P, v〉m such that hm(Γk) = 1 but hm(s)(a = a) = 0.
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From the latter, there is a δ such that hm(s)(a = a)//δ = 0; so by HF(R),
〈∆(a), ∆(a)〉 6∈ vm(s)(=). Now P(=) is 〈0, 0〉 or not; if P(=) = 〈0, 0〉,
then vm(s)(=) = {〈u, u〉 | u ∈ U}; so 〈∆(a), ∆(a)〉 ∈ vm(s)(=); this is
impossible, so P(=) 6= 〈0, 0〉, and vm(s)(=) = {〈u, u〉 | u ∈ D(m(s))}. But
since hm(Γk) = 1, by VFα*, hm(s)(P1[a = a]) = 1; so hm(s)(P1[a =

a])//δ = 1; so with HF(∧), for an i such that P(=)i > 1, hm(s)(Ea)//δ =

1, and by HF(R), ∆(a) ∈ vw(s)(E), so that ∆(a) ∈ D(m(s)); and since
there is some such i, ∆(a) ∈ D(m(s)); so 〈∆(a), ∆(a)〉 ∈ vm(s)(=). This
is impossible; reject the assumption: Γk |=∗

Fnα (a = a)s, which is to say,
Γk |=∗

Fnα Pk.

(=E) If Ak arises by =E, then the picture is like this,

i (ai = b)s

j /Qna1 . . . ai . . . an/t

k /Qna1 . . . b . . . an/t

or
i (b = ai)s

j /Qna1 . . . ai . . . an/t

k /Qna1 . . . b . . . an/t

where i, j < k and Pk is /Qna1 . . . b . . . an/t. In the first case, by as-
sumption, Γi |=∗

Fnα (ai = b)s and Γj |=∗
Fnα

/Qna1 . . . ai . . . an/t; but by the
nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L9.1, Γk |=∗

Fnα (ai = b)s

and Γk |=∗
Fnα

/Qna1 . . . ai . . . an/t. Suppose Γk 6|=∗
Fnα

/Qna1 . . . b . . . an/t;
then by VFα*, there is an Fnα interpretation 〈W,U,D, R, P, v〉m such
that hm(Γk) = 1 but hm(t)(/Qna1 . . . b . . . an/) = 0. From the latter,
there is a δ such that hm(t)(/Qna1 . . . b . . . an/)//δ = 0; so by HF(R),
〈∆(a1) . . . ∆(b) . . . ∆(an)〉 6∈ /v/

m(t)(Q
n). But since hm(Γk) = 1, by

VFα*, hm(s)(ai = b) = 1 and hm(t)(/Qna1 . . . ai . . . an/) = 1; so
hm(s)(ai = b)//δ = 1 and hm(t)(/Qna1 . . . ai . . . an/)//δ = 1. From
the first of these, by HF(R), 〈∆(ai), ∆(b)〉 ∈ vm(s)(=); so, on either
specification of vm(s)(=), ∆(ai) = ∆(b). From the second, by HF(R),
〈∆(a1) . . . ∆(ai) . . . ∆(an)〉 ∈ /v/

m(t)(Q
n); so 〈∆(a1) . . . ∆(b) . . . ∆(an)〉

∈ /v/
m(t)(Q

n). This is impossible; reject the assumption: Γk |=∗
Fnα

/Qna1 . . . b . . . an/t, which is to say, Γk |=∗
Fnα Pk. And similarly in the

other case.

(P1I) If Pk arises by P1I, then the picture is like this,

i (Qna1 . . . an)s

k P1[Qna1 . . . an]s

where i < k and Pk is P1[Qna1 . . . an]s. By our assumption, Γi |=∗
Fnα

(Qna1 . . . an)s; but by the nature of access, Γi ⊆ Γk; so by L9.1, we
have Γk |=∗

Fnα (Qna1 . . . an)s. Suppose Γk 6|=∗
Fnα P1[Qna1 . . . an]s; then by

VFα*, there is some Fnα interpretation 〈W,U,D, R, P, v〉m such that
hm(Γk) = 1 but in which hm(s)(P1[Qna1 . . . an]) = 0. From the latter,
there is a δ such that hm(s)(P1[Qna1 . . . an])//δ = 0; so, with HF(∧),
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there is some i such that P(Qn)i > 1 and hm(s)(Eai)//δ = 0; so by
HF(R), ∆(ai) 6∈ vm(s)(E); so ∆(ai) 6∈ D(m(s)). But since hm(Γk) = 1,
by VFα*, hm(s)(Q

na1 . . . an) = 1; so hm(s)(Q
na1 . . . an)//δ = 1; so

by HF(R), 〈∆(a1) . . . ∆(an)〉 ∈ vm(s)(Q
na1 . . . an); so by EP, for i with

P(Qn)i > 1 as above, ∆(ai) ∈ D(m(s)). This is impossible; reject the
assumption: Γk |=∗

Fnα P1[Qna1 . . . an]s, which is to say, Γk |=∗
Fnα Pk.

(P2I) If Pk arises by P2I, then the picture is like this,

i (¬Qna1 . . . an)s

k P2[Qna1 . . . an]s

where i < k and Pk is P2[Qna1 . . . an]s. By assumption, we have Γi |=∗
Fnα

(¬Qna1 . . . an)s; but by the nature of access, Γi ⊆ Γk; so by L9.1,
Γk |=∗

Fnα (¬Qna1 . . . an)s. Suppose that Γk 6|=∗
Fnα P2[Qna1 . . . an]s; then

by VFα*, there is some Fnα interpretation 〈W,U,D, R, P, v〉m such
that hm(Γk) = 1 but in which hm(s)(P2[Qna1 . . . an]) = 0. From the
latter, there is a δ such that hm(s)(P2[Qna1 . . . an])//δ = 0; so, with
HF(∧), there is some i such that P(Qn)i = 2 and hm(s)(Eai)//δ = 0; so
by HF(R), ∆(ai) 6∈ vm(s)(E); so ∆(ai) 6∈ D(m(s)). But since hm(Γk) = 1,
by VFα*, hm(s)(¬Qna1 . . . an) = 1; so hm(s)(¬Qna1 . . . an))//δ = 1;
so by HF(¬), hm(s)(Q

na1 . . . an) = 0; so by HF(R), 〈∆(a1) . . . ∆(an)〉 6∈
vm(s)(Q

na1 . . . an); so, by the construction of v, for i with P(Qn)i = 2

as above, ∆(ai) ∈ D(m(s)). This is impossible; reject the assumption:
Γk |=∗

Fnα P2[Qna1 . . . an]s, which is to say, Γk |=∗
Fnα Pk.

(P2E) If Pk arises by P2E, then the picture is like this,

i P2[Qna1 . . . an]s

j (Qna1 . . . an)s

k (Qna1 . . . an)s

where i, j < k and Pk is (Qna1 . . . an)s. By assumption, we have Γi |=∗
Fnα

P2[Qna1 . . . an]s and Γj |=∗
Fnα (Qna1 . . . an)s; but by the nature of access,

Γi ⊆ Γk and Γj ⊆ Γk; so by L9.1, Γk |=∗
Fnα P2[Qna1 . . . an]s and Γk |=∗

Fnα

(Qna1 . . . an)s. Suppose Γk 6|=∗
Fnα (Qna1 . . . an)s; then by VFα*, there

is som Fnα interpretation 〈W,U,D, R, P, v〉m such that hm(Γk) = 1 but
in which hm(s)(Q

na1 . . . an) = 0. From the latter, there is a δ such that
hm(s)(Q

na1 . . . an)//δ = 0; so by HF(R), we have 〈∆(a1) . . . ∆(an)〉 6∈
vm(s)(Q

n). But since hm(Γk) = 1, by VFα*, hm(s)(P2[Qna1 . . . an])

= 1 and hm(s)(Q
na1 . . . an) = 1; so hm(s)(P2[Qna1 . . . an])//δ = 1 and

hm(s)(Q
na1 . . . an)//δ = 1; from the second of these, by HF(R), 〈∆(a1)

. . . ∆(an)〉 ∈ vm(s)(Q
n); so by the construction of v, either 〈∆(a1) . . .

∆(an)〉 ∈ vm(s)(Q
n) or there is some i such that P(Qn)i = 2 and

∆(ai) 6∈ D(m(s)); so there is some i such that P(Qn)i = 2 and ∆(ai) 6∈
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D(m(s)). But since hm(s)(P2[Qna1 . . . an])//δ = 1, with HF(∧), any
such i with P(Qn)i = 2 has hm(s)(Eai)//δ = 1; so by HF(R), ∆(ai) ∈
vm(s)(E); so ∆(ai) ∈ D(m(s)). This is impossible; reject the assump-
tion: Γk |=∗

Fnα (Qna1 . . . an)s, which is to say, Γk |=∗
Fnα Pk.

(AMη) If Pk arises by AMη, then the picture is like this,

s.t

i /A/u

k /A/u

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is /A/u. Where
this rule is included in NFnα, Fnα includes condition η. By assump-
tion, Γi |=∗

Fnα
/A/u; but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by

L9.1, Γk ∪ {s.t} |=∗
Fnα

/A/u. Suppose Γk 6|=∗
Fnα

/A/u; then by VFα*,
there is a Fnα interpretation 〈W,U,D, R, P, v〉m such that hm(Γk) = 1

but hm(u)(/A/) = 0. By condition η, there is a w ∈ W such that
m(s)Rw; consider a map m′ like m except that m′(t) = w, and con-
sider 〈W,U,D, R, P, v〉m′ ; since t does not appear in Γk, it remains that
hm′(Γk) = 1; and sincem′(s) = m(s) andm′(t) = w, 〈m′(s),m′(t)〉 ∈ R;
so hm′(Γk ∪ {s.t}) = 1; so by VFα*, hm′(u)(/A/) = 1. But since t 6= u,
m′(u) = m(u); so hm(u)(/A/) = 1. This is impossible; reject the as-
sumption: Γk |=∗

Fnα
/A/u, which is to say, Γk |=∗

Fnα Pk.

(AMρ)

(AMσ) If Pk arises by AMσ, then the picture is like this,

i s.t

k t.s

where i < k and Pk is t.s. Where this rule is in NFnα, Fnα includes
condition σ. By assumption, Γi |=∗

Fnα s.t; but by the nature of access,
Γi ⊆ Γk; so by L9.1, Γk |=∗

Fnα s.t. Suppose Γk 6|=∗
Fnα t.s; then by VFα*,

there is some Fnα interpretation 〈W,U,D, R, P, v〉m such that hm(Γk) =

1 but 〈m(t),m(s)〉 6∈ R; since hm(Γk) = 1, by VFα*, 〈m(s),m(t)〉 ∈ R;
and by condition σ, for any 〈x, y〉 ∈ R, 〈y, x〉 ∈ R; so 〈m(t),m(s)〉 ∈ R.
This is impossible; reject the assumption: Γk |=∗

Fnα t.s, which is to say,
Γk |=∗

Fnα Pk.

(AMτ)
———
For any i, Γi |=∗

Fnα Pi.
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 9.2 NFnα is complete: if Γ |=Fnα
/A/ then Γ ǸFnα

/A/.

Suppose Γ |=Fnα
/A/; then Γ0 |=∗

Fnα
/A/0; we show that Γ0 `∗NFnα

/A/0. As usual,
this reduces to the standard notion. For the following, fix on some particular
Fnα. Then definitions of consistency etc. are relative to it.

C Γ is  iff there is no /A/s such that Γ `∗NFnα
/A/s and Γ `∗NFnα

\¬A\s.

L9.5 If s is 0 or appears in Γ , and Γ 6`∗NFnα
\¬P\s, then Γ ∪ {/P/s} is consistent.

Suppose s is 0 or appears in Γ and Γ 6`∗NFnα
\¬P\s but Γ ∪ {/P/s} is in-

consistent. Then there is some At such that Γ ∪ {/P/s} `∗NFnα
//A//t and

Γ ∪ {/P/s} `∗NFnα
\\¬A\\t. But then we can argue,

1 Γ

2 /P/s A (c, ¬I)

3 //A//t from Γ ∪ {/P/s}

4 \\¬A\\t from Γ ∪ {/P/s}

5 \¬P\s 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in Γ ;
so Γ `∗NFnα

\¬P\s. But this is impossible; reject the assumption: if s is 0

or appears in Γ and Γ 6`∗NFnα
\¬P\s, then Γ ∪ {/P/s} is consistent.

L LetL be like our standard language except for the addition of constants
b1, b2 . . . , and let Γ ′0 be like Γ0 except that its members are members of
L.

L9.6 For a derivation D (or set Σ) say Db/a (Σb/a) is like D (Σ) except that
each of its members has instances of b replaced by a. Then if D is a
derivation from Σ and a is a constant that does not appear inD, Db/a is
a derivation from Σb/a.

L9.7 If Γ0 is consistent, then Γ ′0 is consistent.
Demonstrations for L9.6 and L9.7 on the model of parallel results for
classical logic.

L9.8 There is an enumeration of all the subscripted sentences, P1 P2 . . .

Proof by construction as usual.

M Γ is  - iff for any As either Γ `∗NFnα
/A/s or Γ `∗NFnα

\¬A\s.

S Γ is a  set for 2 iff for every formula of the form /¬2A/s,
if Γ `∗NFnα

/¬2A/s then there is some t such that Γ `∗NFnα s.t and Γ `∗NFnα

/¬A/t.
Γ is a  set for ∀ iff for every formula of the form /¬∀xA/s, if
Γ `∗NFnα

/¬∀xA/s then there is some a such that Γ `∗NFnα Eas and Γ `∗NFnα

/¬Ax/a/s.
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C(Γ ′′) For Γ with unsubscripted sentences and the corresponding Γ0 and Γ ′0, we
construct Γ ′′ as follows. SetΩ0 = Γ ′0. By L9.8, there is an enumeration,
P1,P2 . . . of all the subscripted sentences; let E0 be this enumeration.
Then for the first /A/s in Ei−1 such that s is 0 or included in Ωi−1, let
Ei be like Ei−1 but without /A/s, and set,

Ωi = Ωi−1 if Ωi−1 `∗NFnα
\¬A\s

Ωi∗ = Ωi−1 ∪ {/A/s} if Ωi−1 6`∗NFnα
\¬A\s

and
Ωi = Ωi∗ if /A/s is not of the form /¬2P/s or

/¬∀xP/s

Ωi = Ωi∗ ∪ {s.t, /¬P/t} if /A/s is of the form /¬2P/s

-where t is the first subscript not included in Ωi∗

Ωi = Ωi∗ ∪ {Ebs, /¬Px/b/s} if /A/s is of the form /¬∀xP/s

-where b is the first new constant not included in Ωi∗

then
Γ ′′ =

⋃
i>0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initialΩ0 being 0.
And similarly, there is sure to be a constant b not in Ωi∗ since the only
constants inΩ0 are from the original language. Suppose s appears in Γ ′′;
then there is someΩi in which it is first appears; and any formula Pj in
the original enumeration that has subscript s is sure to be “considered”
for inclusion at a subsequent stage.

L9.9 For any s included in Γ ′′, Γ ′′ is s-maximal.
Suppose s is included in Γ ′′ but Γ ′′ is not s-maximal. Then there is
some As such that Γ ′′ 6`∗NFnα

/A/s and Γ ′′ 6`∗NFnα
\¬A\s. For any i, each

member of Ωi−1 is in Γ ′′; so if Ωi−1 `∗NFnα
\¬A\s then Γ ′′ `∗NFnα

\¬A\s;
but Γ ′′ 6`∗NFnα

\¬A\s; so Ωi−1 6`∗NFnα
\¬A\s; so since s is included in Γ ′′,

there is a stage in the construction that setsΩi∗ = Ωi−1 ∪ {/A/s}; so by
construction, /A/s ∈ Γ ′′; so Γ ′′ `∗NFnα

/A/s. This is impossible; reject the
assumption: Γ ′′ is s-maximal.

L9.10 If Γ ′0 is consistent, then each Ωi is consistent.
Suppose Γ ′0 is consistent.

Basis: Ω0 = Γ ′0 and Γ ′0 is consistent; so Ω0 is consistent.
Assp: For any i, 0 6 i < k, Ωi is consistent.
Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {/A/s}, (iii) Ωk∗ ∪
{s.t, /¬P/t}, or (iv) Ωk∗ ∪ {Ebs, /¬Px/b/s}.
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(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.
(ii) SupposeΩk isΩk∗ = Ωk−1 ∪ {/A/s}. Then by construction, s is

0 or in Ωk−1 and Ωk−1 6`∗NFnα
\¬A\s; so by L9.5, Ωk−1 ∪ {/A/s}

is consistent; so Ωk is consistent.
(iii) Suppose Ωk is Ωk∗ ∪ {s.t, /¬P/t}. In this case, as above, Ωk∗ is

consistent and by construction, /¬2P/s ∈ Ωk∗ . Suppose that
Ωk is inconsistent. Then there is some Au such that Ωk∗ ∪
{s.t, /¬P/t} `∗NFnα

//A//u and Ωk∗ ∪ {s.t, /¬P/t} `∗NFnα
\\¬A\\u. In

this case, reason as follows,

1 Ωk∗

2 s.t A (g, 2I)

3 /¬P/t A (c, ¬E)

4 //A//u from Ωk∗ ∪ {s.t, /¬P/t}

5 \\¬A\\u from Ωk∗ ∪ {s.t, /¬P/t}

6 \P\t 3-5 ¬E
7 \2P\s 2-6 2I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NFnα
\2P\s;

but /¬2P/s ∈ Ωk∗ ; so Ωk∗ `∗NFnα
/¬2P/s; so Ωk∗ is inconsistent.

This is impossible; reject the assumption: Ωk is consistent.
(iv) Suppose Ωk is Ωk∗ ∪ {Ebs, /ŋPx/b/s}. In this case, as above,

Ωk∗ is consistent and by construction, /¬∀xP/s ∈ Ωk∗ . Sup-
poseΩk is inconsistent. Then there is some Au such thatΩk∗ ∪
{Ebs, /Px/b/s} `∗NFnα

//A//u andΩk∗ ∪ {Ebs, /Px/b/s} `∗NFnα
\\¬A\\u.

So reason as follows,

1 Ωk∗

2 Ebs A (g, ∀I)

3 /¬Px/b/s A (c, ¬E)

4 //A//u from Ωk∗ ∪ {Ebs, /¬Px/b/s}

5 \\¬A\\u from Ωk∗ ∪ {Ebs, /¬Px/b/s}

6 \Px/b\s 3-5 ¬E
7 \∀xP\s 2-6 ∀I

where, by construction, b does not appear in Ωk∗ or in P. So
Ωk∗ `∗NFnα

\∀xP\s; but /¬∀xP/s ∈ Ωk∗ ; so Ωk∗ `∗NFnα
/¬∀xP/s; so

Ωk∗ is inconsistent. This is impossible; reject the assumption:
Ωk is consistent.

———
For any i, Ωi is consistent.

L9.11 If Γ ′0 is consistent, then Γ ′′ is consistent.
Reasoning parallel to L2.6 and L6.6.
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L9.12 If Γ ′0 is consistent, then Γ ′′ is a scapegoat set for 2 and ∀.
For (2). Suppose Γ ′0 is consistent and Γ ′′ `∗NFnα

/¬2P/s. By L9.11,
Γ ′′ is consistent; and by the constraints on subscripts, s is included
in Γ ′′. Since Γ ′′ is consistent, Γ ′′ 6`∗NFnα

\¬¬2P\s; so there is a stage
in the construction process where Ωi∗ = Ωi−1 ∪ {/¬2P/s} and Ωi =

Ωi∗ ∪ {s.t, /¬P/t}; so by construction, s.t ∈ Γ ′′ and /¬P/t ∈ Γ ′′; so
Γ ′′ `∗NFnα s.t and Γ ′′ `∗NFnα

/¬P/t. So Γ ′′ is a scapegoat set for 2.
For ∀. Suppose Γ0 is consistent and Γ ′′ `∗NFnα

/¬∀xP/s. By L9.11, Γ ′′

is consistent; and by the constraints on subscripts, s is included in Γ ′′.
Since Γ ′′ is consistent, Γ ′′ 6`∗NFnα

\¬¬∀xP\s; so there is a stage in the
construction process where Ωi∗ = Ωi−1 ∪ {/¬∀xP/s} and Ωi = Ωi∗ ∪
{Ebs, /¬Px/b/s}; so by construction, Ebs ∈ Γ ′′ and /¬Px/b/s ∈ Γ ′′; so
Γ ′′ `∗NFnα Ebs and Γ ′′ `∗NFnα

/¬Px/b/s. So Γ ′′ is a scapegoat set for ∀.

C(I) We construct an interpretation I = 〈W,U,D, R, P, v〉 based on Γ ′′ as
follows. Consider an enumeration a1, a2 . . . of constants in L and say
i ' j iff i = j or for some s, Γ ′′ `∗NFnα (ai = aj)s, and set i = {j | i ' j}.
Then for I = 〈W,U,D, R, P, v〉, letW have a member ws corresponding
to each subscript s included in Γ ′′. Set U = {i | i > 1}, and i ∈ D(ws)

iff Γ ′′ `∗NFnα (Eai)s. And set 〈ws, wt〉 ∈ R iff Γ ′′ `∗NFnα s.t. For any ai,
let v(ai) = i; and 〈i . . . j〉 ∈ vws(Q

n) iff Γ ′′ `∗NFnα (Qna1 . . . an)s. Set P

directly from specification of the derivation system: if Eti is a conjunct
of an arbitrary P2[Qnt1 . . . tn]s, then P(Qn)i = 2; if Eti is a conjunct of
an arbitrary P1[Qnt1 . . . tn]s but not P2[Qnt1 . . . tn]s, then P(Qn)i = 1;
otherwise P(Qn)i = 0.
Note that, for arbitrary δ, ∆(ak) = v(ak) = k.

L.13 I = 〈W,U,D, R, P, v〉 constructed as above is consistently specified.

reflexivity: For any i, i ' i. By construction.
symmetry: For any i and j, if i ' j, then j ' i. Suppose i ' j. If i =

j, the result is immediate. So suppose i 6= j; then for some s,
Γ ′′ `∗NFnα (ai = aj)s; so by =E, Γ ′′ `∗NFnα (ai = ai)s; and by =E again,
Γ ′′ `∗NFnα (aj = ai)s; so j ' i.

transitivity: For any i, j, and k, if i ' j, and j ' k, then i ' k. Suppose
i ' j and j ' k. If i = j or j = k, the result is immediate. So
suppose i 6= j and j 6= k; then for some s and t, Γ ′′ `∗NFnα (ai = aj)s

and Γ ′′ `∗NFnα (aj = ak)t; so by =E, Γ ′′ `∗NFnα (ai = ak)s; so i ' k.
self-membership: For any i, i ∈ i. For any i, by reflexivity, i ' i; so i ∈ i.
uniqueness: For any i, if i ∈ h and i ∈ k, then h = k. Suppose there are h

and k such that i ∈ h and i ∈ k, but h 6= k. From the latter, there is
some j such that j ∈ h and j 6∈ k, or j ∈ k and j 6∈ h; without loss of
generality, suppose the former; then h ' i, k ' i and h ' j; from
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the first, by symmetry, i ' h; so with the second, by transitivity,
k ' h, and with the third, by transitivity again, k ' j; so j ∈ k.
This is impossible; reject the assumption: if i ∈ h and i ∈ k, then
h = k.

equality: For any i and j, j ' i iff i = j. Suppose j ' i; then i ∈ j; but by
self-membership, i ∈ i; so by uniqueness, i = j. Suppose i = j; by
self-membership, i ∈ i; so i ∈ j; so j ' i.

Now for the main lemma:
D is consistently specified. Suppose otherwise; then for some s and
i = j, i ∈ D(ws) but j 6∈ D(ws). So suppose i = j and i ∈ D(ws). If
i = j, it is immediate that j ∈ D(ws). So suppose i 6= j. Since i ∈ D(ws),
by construction, Γ ′′ `∗NFnα (Eai)s. And since i = j, by equality, i ' j;
so, since i and j are distinct, for some t, Γ ′′ `∗NFnα (ai = aj)t; so by =E,
Γ ′′ `∗NFnα (Eaj)s; so by construction, j ∈ D(ws).
vw(Qn) is consistently specified. Suppose otherwise; then for some s

and 〈h . . . k〉 = 〈d . . . l〉, 〈h . . . k〉 ∈ vws(Q
n) but 〈d . . . l〉 6∈ vws(Q

n).
So suppose 〈h . . . k〉 = 〈d . . . l〉 and 〈h . . . k〉 ∈ vws(Q

n). If h = d and
. . . and k = l, it is immediate that 〈d . . . l〉 ∈ vws(Q

n). So suppose
some i in h . . . k is distinct from the corresponding j in d . . . l. Since
〈h . . . i . . . k〉 ∈ vws(Q

n), by construction, Γ ′′ `∗NFnα (Qnah . . . ai . . . ak)s.
Since 〈h . . . i . . . k〉 = 〈d . . . j . . . l〉, i = j; so by equality, i ' j; so since
i and j are distinct, for some t, Γ ′′ `∗NFnα (ai = aj)t; so by =E, Γ ′′ `∗NFnα

(Qnah . . . aj . . . ak)s; and similarly for other members that are distinct;
so Γ ′′ `∗NFnα (Qnad . . . aj . . . al)s; so by construction, 〈d . . . l〉 ∈ vws(Q

n).
v(ai) is consistently specified – any constant ai is assigned to exactly
one member of U. This follows immediately from self-membership and
uniqueness.

L9.14 I = 〈W,U,D, R, P, v〉 constructed as above is such that 〈i . . . j〉 ∈ vws(Q
n)

iff Γ ′′ `∗NFnα (Qna1 . . . an)s.
(i) Suppose 〈i . . . j〉 ∈ vws(Q

n); then by the construction of v, either
〈i . . . j〉 ∈ vws(Q

n), or for some k in i . . . j, P(Qn)k = 2 and k 6∈ D(ws).
In the first case, by construction, Γ ′′ `∗NFnα (Qnai . . . aj)s; so by (D), it
follows that Γ ′′ `∗NFnα (Qnai . . . aj)s. In the second case, by construction,
Eak is a conjunct of P2[Qnai . . . aj] and Γ ′′ 6`∗NFnα (Eak)s; however, if
Γ ′′ `∗NFnα ¬(Qnai . . . aj)s, then by P2I, Γ ′′ `∗NFnα P2[Qnai . . . aj]s, and
by ∧E, Γ ′ `∗NFnα (Eak)s; so we have Γ ′′ 6`∗NFnα (¬Qnai . . . aj)s; but by
L9.9, Γ ′′ is s-maximal; so Γ ′′ `∗NFnα (Qnai . . . aj)s. So in either case,
Γ ′′ `∗NFnα (Qnai . . . aj)s.
(iib) Suppose Γ ′′ `∗NFnα (Qnai . . . aj)s. Either Γ ′′ `∗NFnα P2[Qnai . . . aj]s or
not. If Γ ′′ `∗NFnα P2[Qnai . . . aj]s, by P2E, Γ ′′ `∗NFnα (Qnai . . . aj)s; so by
construction, 〈i . . . j〉 ∈ vws(Q

n); so by the construction of v, 〈i . . . j〉 ∈
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vws(Q
n). If Γ ′′ 6`∗NFnα P2[Qnai . . . aj]s, there is some k in i . . . j such

that P(Qn)k = 2, and Γ ′′ 6`∗NFnα (Eak)s; from the latter, by construction,
k 6∈ D(ws); so by the construction of v, 〈i . . . j〉 ∈ vws(Q

n). So in either
case, 〈i . . . j〉 ∈ vws(Q

n).

L9.15 If Γ ′0 is consistent then for 〈W,U,D, R, P, v〉 constructed as above, any
sentence /A/ inL, and for any s included in Γ ′′, hws(/A/) = 1 iff Γ ′′ `∗NFnα

/A/s.
Suppose Γ ′0 is consistent and s is included in Γ ′′. By L9.9, Γ ′′ is s-
maximal. By L9.11 and L9.12, Γ ′′ is consistent and a scapegoat set for
2 and ∀. Now by induction on the number of operators in /A/s,

Basis: If /A/s has no operators, then it follows that it is is an atomic
of the sort /Qnai . . . aj/. hws(/A/) = 1 iff hws(/Qnai . . . aj/) =

1; iff, for arbitrary δ, hws(/Qnai . . . aj/)//δ = 1; by HF(R), iff
〈∆(ai) . . . ∆(aj)〉 ∈ /v/ws(Q

n); iff 〈i . . . j〉 ∈ /v/ws(Q
n); by con-

struction and L9.14, iff Γ ′′ `∗NFnα (/Qnai . . . aj/)s; iff Γ ′′ `∗NFnα

/A/s.
Assp: For any i, 0 6 i < k, if /A/s has i operators, then hws(/A/) = 1

iff Γ ′′ `∗NFnα
/A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ ′′ `∗NFnα
/A/s.

If /A/s has k operators, then it is of the form /¬P/s, /P ∧ Q/s,
/2P/s or /∀xP/s, where P and Q have < k operators.

(¬) /A/s is /¬P/s. (i) Suppose hws(/A/) = 1; then hws(/¬P/) = 1;
so for arbitrary δ, hws(/¬P/)//δ = 1; so by HF(¬), hws(\P\)//δ

= 0; so, hws(\P\) = 0; so by assumption, Γ ′′ 6`∗NFnα
\P\s; so by s-

maximality, Γ ′′ `∗NFnα
/¬P/s, where this is to say, Γ ′′ `∗NFnα

/A/s. (ii)
Suppose Γ ′′ `∗NFnα

/A/s; then Γ ′′ `∗NFnα
/¬P/s; so by consistency,

Γ ′′ 6`∗NFnα
\P\s; so by assumption, hws(\P\) = 0; so there is a δ

such that hws(\P\)//δ = 0; so by HF(¬), hws(/¬P/)//δ = 1; and
since /A/s has no free variables, by L9.2, hws(/¬P/) = 1, where
this is to say, hws(/A/) = 1. So hws(/A/) = 1 iff Γ ′′ `∗NFnα

/A/s.
(∧)
(2) /A/s is /2P/s. (i) Suppose hws(/A/) = 1, but Γ ′′ 6`∗NFnα

/A/s; then
hws(/2P/) = 1, but Γ ′′ 6`∗NFnα

/2P/s. From the latter, by maximal-
ity, Γ ′′ `∗NFnα

\¬2P\s; so, since Γ ′′ is a scapegoat set for 2, there
is some t such that Γ ′′ `∗NFnα s.t and Γ ′′ `∗NFnα

\¬P\t; from the first
of these, by construction, 〈ws, wt〉 ∈ R; and from the second,
by consistency, Γ ′′ 6`∗NFnα

/P/t; so by assumption, hwt(/P/) = 0;
so for some δ, hwt(/P/)//δ = 0; so by HF(2), hws(/2P/)//δ = 0;
so hws(/2P/) = 0. This is impossible; reject the assumption: if
hws(/A/) = 1, then Γ ′′ `∗NFnα

/A/s.
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(ii) Suppose Γ ′′ `∗NFnα
/A/s, but hws(/A/) = 0; then Γ ′′ `∗NFnα

/2P/s, but hws(/2P/) = 0. From the latter, there is a δ such
that hws(/2P/)//δ = 0; so by HF(2), there is awt ∈ W such that
wsRwt and hwt(/P/)//δ = 0; so hwt(/P/) = 0; so by assumption,
Γ ′′ 6`∗NFnα

/P/t; but since wsRwt, by construction, Γ ′′ `∗NFnα s.t;
so by 2E, Γ ′′ `∗NFnα

/P/t. This is impossible; reject the assump-
tion: if Γ ′′ `∗NFnα

/A/s, then hws(/A/) = 1. So hws(/A/) = 1 iff
Γ ′′ `∗NFnα

/A/s.
(∀) /A/s is /∀xP/s. (i) Suppose hws(/A/) = 1, but Γ ′′ 6`∗NFnα

/A/s;
then hws(/∀xP/) = 1, but Γ ′′ 6`∗NFnα

/∀xP/s. From the latter, by
maximality, Γ ′′ `∗NFnα

\¬∀xP\s; so, since Γ ′′ is a scapegoat set for ∀,
there is some ai such that Γ ′′ `∗NFnα (Eai)s and Γ ′′ `∗NFnα

\¬Px/ai
\s;

from the first of these, by construction, i ∈ D(ws); and from
the second, by consistency, Γ ′′ 6`∗NFnα

/Px/ai
/s; so by assumption,

hws(/Px/ai
/) = 0; so for some δ, hws(/Px/ai

/)//δ = 0; but v(ai) =

i; so ∆(ai) = i; so by L9.4, hw(s)(/P/)//δ[x|i] = 0; so by HF(∀),
hws(/∀xP/)//δ = 0; so hws(/∀xP/) = 0. This is impossible; reject
the assumption: if hws(/A/) = 1, then Γ ′′ `∗NFnα

/A/s.
(ii) Suppose Γ ′′ `∗NFnα

/A/s, but hws(/A/) = 0; then Γ ′′ `∗NFnα

/∀xP/s, but hws(/∀xP/) = 0. From the latter, there is a δ such
that hws(/∀xP/)//δ = 0; so by HF(∀), there is some i ∈ D(ws)

such that hws(/P/)//δ[x|i] = 0. Since i ∈ D(ws), by construc-
tion, Γ ′′ `∗NFnα (Eai)s. And since v(ai) = i, ∆(ai) = i; so by L9.4,
hws(/Px/ai

/)//δ = 0; so hws(/Px/ai
/) = 0; so by assumption,

Γ ′′ 6`∗NFnα
/Px/ai

/s. But since Γ ′′ `∗NFnα
/∀xP/s and Γ ′′ `∗NFnα (Eai)s,

by ∀E, Γ ′′ `∗NFnα
/Px/ai

/s. This is impossible; reject the assump-
tion: if Γ ′′ `∗NFnα

/A/s, then hws(/A/) = 1. So hws(/A/) = 1 iff
Γ ′′ `∗NFnα

/A/s.
———
For any As, hws(/A/) = 1 iff Γ ′′ `∗NFnα

/A/s.

L9.16 If Γ ′0 is consistent, then 〈W,U,D, R, P, v〉 constructed as above is an Fnα
interpretation.
Suppose Γ ′0 is consistent.

(EP) Suppose 〈i . . . j〉 ∈ vws(Q
n) and for some k in i . . . j, P(Qn)k > 1.

From the former, by construction, Γ ′′ `∗NFnα (Qnai . . . aj)s; so
by P1I, Γ ′′ `∗NFnα P1[Qnai . . . aj]s. But since since P(Qn)k > 1,
by construction, Eak is a conjunct of P1[Qnai . . . aj]; so with
∧E, Γ ′′ `∗NFnα (Eak)s; so by construction, k ∈ D(ws), and EP is
satisfied.

(E) By construction, i ∈ vws(E) iff Γ ′′ `∗NFnα (Eai)s; by construction
again, iff i ∈ D(ws).
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(=) Suppose P(=) = 〈0, 0〉. (i) Suppose 〈i, j〉 ∈ vws(=); then by con-
struction, Γ ′′ `∗NFnα (ai = aj)s; so i ' j; so by equality i = j.
(ii) Suppose i = j. Since P(=) = 〈0, 0〉 it is trivial that Γ ′′ `∗NFnα

P1[ai = ai]s; so by (=I), Γ ′′ `∗NFnα (ai = ai)s. And since i = j, by
equality, i ' j; so either i = j or for some t, Γ ′′ `∗NFnα (ai = aj)t.
In the first case, since Γ ′′ ǸFnα (ai = ai)s, Γ ′′ ǸFnα (ai = aj)s

so that, by construction, 〈i, j〉 ∈ vws(=). In the second case, by
(=E), Γ ′′ `∗NFnα (ai = aj)s; and by construction, 〈i, j〉 ∈ vws(=).
In either case, then, 〈i, j〉 ∈ vws(=). So the interpretation of (=)
is as it should be.
Suppose P(=) 6= 〈0, 0〉. (i) Suppose 〈i, j〉 ∈ vws(=); then by con-
struction, Γ ′′ `∗NFnα (ai = aj)s; so i ' j; so by equality, i = j. And
since Γ ′′ `∗NFnα (ai = aj)s, by P1I, Γ ′′ `∗NFnα P1[ai = aj]s; so since
P(=) has some member 6= 0, with ∧E, either Γ ′′ `∗NFnα (Eai)s or
Γ ′′ `∗NFnα (Eaj)s; so by construction, i ∈ D(ws) or j ∈ D(ws); so,
since i = j, i ∈ D(ws). (ii) Suppose i = j and i ∈ D(ws). From
the latter, Γ ′′ `∗NFnα (Eai)s; so for any version of P1[ai = ai],
Γ ′′ `∗NFnα P1[ai = ai]s; so by (=)I, Γ ′′ `∗NFnα (ai = ai)s. From
the former, by equality, i ' j; so either i = j or for some t,
Γ ′′ `∗NFnα (ai = aj)t. In the first case, since Γ ′′ ǸFnα (ai = ai)s,
Γ ′′ ǸFnα (ai = aj)s so that, by construction, 〈i, j〉 ∈ vws(=). In
the second case, by (=)E, Γ ′′ `∗NFnα (ai = aj)s; and by construc-
tion, 〈i, j〉 ∈ vws(=). In either case, then, 〈i, j〉 ∈ vws(=). So the
interpretation of (=) is as it should be.

(η) Suppose α includes condition η and ws ∈ W. Then, by con-
struction, s is a subscript in Γ ′; so by reasoning as follows,
1 Γ ′

2 s.t A (g, AMη)

3 >t > is a tautology
4 3>s 2,3 3I
5 3>s 2-4 AMη

6 ¬2¬>s 5 MN

Γ ′ `∗NFnα ¬2¬>s; but by L9.12, Γ ′ is a scapegoat set for2; so there
is a t such that Γ ′ `∗NFnα s.t; so by construction, 〈ws, wt〉 ∈ R and
η is satisfied.

(ρ) Suppose α includes condition ρ and ws ∈ W. Then by con-
struction, s is a subscript in Γ ′; so by (AMρ), Γ ′ `∗NFnα s.s; so by
construction, 〈ws, ws〉 ∈ R and ρ is satisfied.

(σ) Suppose α includes condition σ and 〈ws, wt〉 ∈ R. Then by con-
struction, Γ ′ `∗NFnα s.t so by (AMσ), Γ ′ `∗NFnα t.s; so by construc-
tion, 〈wt, ws〉 ∈ R and σ is satisfied.

(τ) Suppose α includes condition τ and 〈ws, wt〉, 〈wt, wu〉 ∈ R. Then
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by construction, Γ ′ `∗NFnα s.t and Γ ′ `∗NFnα t.u; so by (AMτ), Γ ′ `∗NFnα

s.u; so by construction, 〈ws, wu〉 ∈ R and τ is satisfied.

M For any ws ∈ W, set m(s) = ws; otherwise m(s) is arbitrary. And let
I′ = 〈W,U,D, R, P, v′〉 be like I except without assignments to constants
not in the original language. Clearly I′ is an interpretatio for our our
original language, and remains an Fnα interpretation.

L9.17 If Γ0 is consistent, then h′m(Γ0) = 1.
Suppose Γ0 is consistent and /A/0 ∈ Γ0; then /A/0 ∈ Γ ′0 and by L9.7,
Γ ′0 is consistent; then by construction, /A/0 ∈ Γ ′′; so Γ ′′ `∗NFnα

/A/0; so
by L9.15, hw0

(/A/) = 1; but /A/ is a sentence of the original language
without extra constants; so by the corollary to L9.3, h′w0

(/A/) = 1. And
similarly for any /A/0 ∈ Γ0. Butm(0) = w0; so h′m(Γ0) = 1.

Main result: Suppose Γ |=Fnα
/A/ but Γ 6 ǸFnα

/A/. Then Γ0 |=∗
Fnα

/A/0 but Γ0 6`∗NFnα

/A/0. By (DN), if Γ0 `∗NFnα
/¬¬A/0, then Γ0 `∗NFnα

/A/0; so Γ0 6`∗NFnα
/¬¬A/0;

so by L9.5, Γ0 ∪ {\¬A\0} is consistent; so by L9.16 and L9.17, there is an Fnα
interpretation I′ = 〈W,U,D, R, P, v′〉m constructed as above such that h′m(Γ0 ∪
{\¬A\0}) = 1; so h′m(0)(

\¬A\) = 1; so for any δ, h′m(0)(
\¬A\)//δ = 1; so by

HF(¬), h′m(0)(
/A/)//δ = 0; so h′m(0)(

/A/) = 0; so h′m(Γ0) = 1 and h′m(0)(A) =

0; so by VFα*, Γ0 6|=∗
Fnα

/A/0. This is impossible; reject the assumption: if
Γ |=Fnα

/A/, then Γ ǸFnα
/A/.
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