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Author Frank Markham Brown, in his book Boolean Reasoning: The Logic of
Boolean Equations, aims at an outline of Boolean logic—its mathematical ba-
sis, its theory, and its applications. According to the author, Boolean logic
proceeds with zero-normal form equations, that is, equations of the form

f(x1, x2, . . . , xn) = 0

where (~xn) ∈ Bn and B is a Boolean algebra. Only finite Boolean algebras are
considered.
The Boolean logic presented is based on the abstract Boolean algebra given

by Huntington’s [14] postulates and on a special canonical form for a Boolean
function given by Archie Blake [2]. The theory of reasoning is divided into
functional and general parts, both of which seek antecedents or consequents
of the Boolean expressions given. Applications of Boolean reasoning, given
by the author, include medical diagnosis, digital fault-location, modeling the
adrenal gland, among other things.
Brown’s monograph-textbook is for all philosophers, logicians, and math-

ematicians interested in 20th century development of the Boole–Schröder [3,
4, 26] algebra of logic and for various scientists, engineers, and medical experts
looking for inference techniques that can be applied to Boolean data. A dis-
tinctive feature of the book is that it emphasizes reasoning as a primary object
of logic as contrasted to Quinean [19, 20, 21, 22] formula-minimization.
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The second, revised edition [6] differs from the first edition [5]. It contains
new subsections such as “Solving Boolean equations using maps”, “Reduction
using resolvents”, and “Solving Boolean equations using resolvents”. Some ma-
terial is removed, for example, the chapter dealing with Boolean identification
now contains only four theorems instead of six. The number of references is
significantly reduced, but there are also new references, two of which are by
Rudeanu [23, 25].

  
To have the zero-normal form equation before us in the first place, the given
initial information must be represented as a collection of equations. The equa-
tions are then condensed into a single equation of the form f(x1, x2, . . . , xn)

= 0. The next step is to generate the “prime implicants” of f. The third and
the last step involves applying reasoning operations to solve the problem.
Note that a given system of Boolean equations may be reduced to a single

equation unlike a system of equations in other branches of algebra. From here
on, the interest is primarily in the consequents of this equation, not in the
solutions of it since the solutions may be just antecedents. Although George
Boole himself was mostly occupied with the (functional) solutions of the equa-
tion, general methods of Boolean reasoning, both antecedent and consequent,
were developed by the Russian logician and mathematician Platon Sergeevich
Poretskiı̆ in the late 19th century, see [27, pp. 216–247]. Blake [2] devised a
practical method for obtaining the consequents before the mid-20th century,
which is the approach Brown follows.
Recall that in traditional logic the hypothetical syllogism is an argument of

the form if P then Q, if Q then R, so if P then R. Hypothetical syllogism can be
translated into the equation-based notation as follows—PQc = 0, QRc = 0,
so PRc = 0—which can readily be proved in Boolean algebra (the symbol “c”
denotes complementation).
In one of the main chapters of the book Brown outlines a basic reasoning

technique that he calls “syllogistic reasoning”. It is a simple, but non-trivial
(see the Alfred-example pp. 132–135) algebraic reasoning technique which can
be applied to statements that are formulated in natural language.
This “syllogistic reasoning” proceeds roughly as follows. The given infor-

mation is first written as zero-equations. For example, the hypothetical state-
ment “If Alfred studies, then he receives good grades” is first thought as P → Q

and then written as equation PQc = 0. All equations are then reduced to one
single zero-equation, consisting of the disjunction of each equation’s left-sides
on the left and zero on the right, like PQc + QRc + PRc = 0. The opera-
tion, called consensus, which Brown attributes to Quine [19], is then applied
repeatedly to the formula until the simplified canonical form, that is, the Blake
canonical form, is produced. The produced formula represents all consequents
that may be inferred from the given initial premises. Finally, the formula is
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broken down to a system of single-equations which are translated back into
the original language from which one started.
A distinctive feature of “syllogistic reasoning” is that it determines the con-

sequents. Boolean problems are not usually formulated as statements to be
proved or disproved. “Syllogistic reasoning” is also related to the resolution-
based reasoning methods used in predicate logic. This concludes our short
tour of “syllogistic reasoning”.
Let ~fm : Bn → B be a given collection of Boolean functions. Obviously,

there are some specific relations holding among these functions. Brown out-
lines and investigates three special types of these functional relations.
Recall that a problem concerning whether or not the members of a given

set of terms sum to one is a tautology problem. A close relative to this problem
is the problem of finding the minimal subset of the set {f1, f2, . . . , fm} that
sums to one. To this end Brown states and proves the following theorem: Let
T be a set of terms and let ~Am be Boolean variables. Then S is a minimal sum-
to-one subset of T iff the product A1A2 · · ·Ak (k is equal to cardinality of S)
is a term of the Blake canonical form of the sum having summands Aiti(~xn),
where i = 1, 2, . . . ,m and ti(~xn) ∈ T .
Another relation that Brown studies is the dependence of sets of Boolean

functions on an arbitrary Boolean algebra, since previous studies on depen-
dence have concentrated on special situations, like propositional or switching
functions. In addition, Brown investigates the problem of finding the irredun-
dant formula for a Boolean function f which happens to be defined only on
some interval g 6 f 6 h of Boolean functions g and h.

F B :  
George Boole and later 19th century logicians solved the zero-normal form
equation f(x1, x2, x3 . . .) = 0 for certain of its arguments in terms of others
thus producing equations of the form x1 = g(x2, x3 . . .) which were func-
tional. Because the end-result is a function, the processes and methods de-
scribed are labelled as “functional reasoning”. Literature on this classic topic
includes items of Schröder [26], Couturat [9], Rudeanu [24, 25], and many oth-
ers.
Let B be a Boolean algebra. A particular solution of f(~xn) = 0 is an element

(~an) of Bn such that f(~an) = 0 is an identity. A general solution of f(~xn) = 0

is a representation of the set of its particular solutions. For example, if n is
equal to one, this representation can be given by the interval {x : f(0) 6 x 6
fc(1)} ⊂ B1 or by the parametric formula {f(0) + pfc(1) : p ∈ B} where p is a
freely chosen member of B.
In this context, Brown outlines general solutions, both interval and para-

metric, using the known method of “successive elimination of variables”, and
then gives an outline of the use of Karnaugh maps to solve equations contain-
ing only a few variables.
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Some theorems related to solutions of zero-normal form equations were
the following. First, Brown states the following two theorems, omitting proofs,
which are related to the interval-representation of the solutions: (1) A sequence
of Boolean functions (ϕ0, ϕ1, . . . , ϕn)which forms a so-called recurrent cover
of a given n-variable Boolean function f may be constructed directly from the
prime implicants of f. (2) Each n-variable Boolean system, called a “subsump-
tive general solution” of the n-variable zero-normal form equation f, is associ-
ated with a recurrent cover (ϕ0, ϕ1, . . . , ϕn) of the function f.
In addition, Brown states and proves an old theorem of Löwenheim [18]

which is related to the parametric general solutions. Löwenheim’s theorem
can be used to form a parametric general solution in a mechanical way from
any given particular solution.
Thirdly, Brown states results that are related to the solutions of one-normal

form equation g(~xn) = 1, where n is supposed to be a relatively small number.
The author discusses first how to present the one-normal form equation as a
special map called a Karnaugh map. The g-map may then be used to find all
particular solutions of g(~xn) = 1.
A Boolean function h : {0, 1}n → {0, 1} and its corresponding Karnaugh

map is said to be orthonormal if h multiplied with itself with distinct argu-
ments is equal to zero, and the sum of all values is equal to one. Given a
Boolean system S(~xn) consisting of k-equations each with n-variables over a
Boolean algebra B, its resolvent | S(~xn) |, is defined as a product over the sys-
tem if each equation gi(~xn) = hi(~xn) is first replaced with the expression
gi(~xn) � hi(~xn), where � is the equivalence-operation, that is, the exclusive
NOR.
Brown states and proves the following theorem which is not included in

the first edition of the book. Let g0 = 1 be the consistency-condition of
the one-normal form equation g(~xn) = 1, meaning that there is at least one
solution. Then the n-variable function h is equal to the resolvent | (~xn) = ϕ |

of a particular solution x1 = ϕ1 ∈ B, x2 = ϕ2 ∈ B, . . . , xn = ϕn ∈ B of
the equation g(~xn) = 1, iff h is orthonormal and h is included in the sum
g(~xn) + gc

0.

F B :  
Producing the functional antecedents of the zero-normal form or the one-
normal form equation is only one part of the “functional reasoning”. The
other part of “functional reasoning” consists of finding functional consequents
of this type of equation. If f(~xn) = 1 is a consistent one-normal form equa-
tion, the task is to find consequents of this equation having the form x1 =

g(x2, x3, . . . , xn). This “functional deduction”, as Brown titles it, seems to
have received little attention in the literature. Brown refers to Ledley’s [16],
[17] work in this context.
Consider a Boolean system S consisting of equations ui = gi(~vs) indexed
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by i = 1, 2, . . . , r, such that (~ur) and (~vs) are disjoint subvectors of (~xn) and
~gr : Bs → B are s-variable Boolean functions. A Boolean system S is said to
be a functional consequent of f(~xn) = 1, and each argument (~ur) is said to be
functionally deducible, in case f(~xn) = 1 implies S.
Brown studies only one-equation systems, that is, systems where r = 1.

The main problem is to determine the minimal sets of variables from which
the value of variable umay be computed, given that u is functionally deducible
from f(~xn) = 1.
Let {{u}, V,W} be a collection of subsets of {x1, x2, . . . , xn} having the

property that each argument xi of the equation appears in exactly one of these
subsets. The set W is said to be u-eliminable from f(~xn) = 1 if f(~xn) = 1

implies u = g(V).
Let f : Bn → B be a Boolean function expressed in terms of arguments ~xn,

and let R,Q, and T be subsets of {x1, x2, . . . , xn}. Define another Boolean func-
tion called the “disjunctive eliminant” of fwith respect to the subset T , denoted
by EDIS(f, T), as follows: (1) EDIS(f, ∅) = f, (2) EDIS(f, {x1}) = f(0, x2, . . . , xn)+

f(1, x2, . . . , xn), (3) EDIS(f, R ∪Q) = EDIS(EDIS(f, R),Q).
Brown states and proves the following theorem: A subsetW isu-eliminable

from the one-normal form equation f(~xn) = 1, if and only if u is functionally
deducible from the equation in which the disjunctive eliminant with respect
to subsetW is equal to 1. Brown then outlines a method which generates the
minimal u-determining subsets.

    
Next, a few remarks about the choice of the canonical form is made. A Boolean
function f determines a certain formula such that another formula (if congru-
ent to it) may be produced using only the commutative law. Blake called this
formula the simplified canonical form, Brown calls it the Blake canonical form.
There are several different ways of representing a Boolean function. One

example is the minterm form, discussed also in Boole [4, 66–79]. For example,
if f : B2 → B is a Boolean function, then by Boole’s expansion theorem [4,
pp. 66–79] f(x1, x2) = xc

1f(0, x2) + x1f(1, x2) for all (x1, x2) ∈ B2. Repeated
application of Boole’s expansion theorem shows that

(∗) f(x1, x2) = xc
1f(0, x2) + x1f(1, x2) = xc

1xc
2f(0, 0) + xc

1x2f(0, 1)

+ x1xc
2f(1, 0) + x1x2f(1, 1).

The values f(0, 0), f(0, 1), f(1, 0), f(1, 1) are elements of the carrier of B, that
is, of the underlying set of the algebra B, and they are called the discriminants
of the function f. The discriminants of f carry all of the information concern-
ing the nature of f. The expanded equation (∗) is called the minterm canonical
form of f.
Since there is only one minterm realization of any Boolean function, why
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not use the minterm form? John Gregg [12, p. 177] notes that some Boolean
mathematicians use minterm form as their canonical form and have no prob-
lem with it. But he [12, p. 177] adds that the minterm expressions often can be
more complicated than one would think that they should be.
According to Gregg [12, pp. 181–182] the Blake canonical form is a kind

of simplification of a given lengthy expression, but it is the fact that the form
contains all of the prime implicants of the function that makes it at least as ap-
pealing as the simplifying properties. It enables one to “ferret out hidden impli-
cants and, therefore, hidden logical conclusions from a given set of premises.”
Gregg [12, p. 182] even goes to say: “The power of this method, when applied
to the field of logic, is something even Aristotle could not have imagined.”
Brown’s tacit argument to base Boolean reasoning on the Blake canonical

form, and not for some other form or representation, is its alleged practical-
ity in reasoning. For example, Poretskıı̆’s Boolean reasoning system, see [27,
pp. 216–247], was based on tables of antecedents and consequents, but accord-
ing to Brown, they are of little practical use for the tables grow rapidly with
the number of variables used. According to Brown, Blakes’s method is more
practical than Poretskiı̆’s.

T     
This last section discuss briefly the method of reasoning and proof. Logicians
involved with lattices, topologies, measures, sets and the like, may not bother
to ask justifications for developing the reasoning methods based on Boolean
algebra; on the other hand logicians who have philosophical training may won-
der what to do about Boole since it is known that Gottlob Frege [11] opened
the path to modern reasoning anyway and that reasoning is to proceed with
quantifiers and predicates, not by Boolean equations. But to think like a post-
Boolean differs fundamentally from thinking like a post-Fregean or traditional
logician.
Note that a Boolean function f : Bn → B takes values over the carrier of its

algebra. The image-set of this mapping being, as shown by Schröder [26, vol. 1,
sct. 19], the interval [Πf(A), Σf(A)], where A ∈ {0, 1}n. In the two-valued
Boolean algebra, which has the carrier {0, 1}, the following properties hold:

x + y = 1 implies x = 1 or y = 1

xy = 0 implies x = 0 or y = 0

x 6= 1 implies x = 0.

These properties hold in classical logic, but they do not hold in Boolean alge-
bras whose carriers consists of more than two elements. According to Brown,
these ”big” Boolean algebras can not be avoided, at least in the context of
switching systems.
In Aristotle’s (384–322 ) syllogistic logic [1], and in the classical proposi-
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tional and predicate logic since, deductions are considered to have two basic
forms: direct and indirect. The rule of inference that permits inferring P hav-
ing derived a contradiction from not-P is an example of an indirect inference
rule. This rule, often called reductio ad absurdum, is the basic principle in clas-
sical logic and in every-day mathematics; however, this inference rule is not
possible in Boolean logic since, according to Brown, the denial of a Boolean
equation is not a Boolean equation. John Corcoran [7, p. 280], [8, pp. xxvi–
xxix] says that Boolean reasoning, or at least Boole’s [4] original work, is flawed
since it does not permit this indirect form of inference.
Of course, this version of reductio ad absurdum to which Corcoran [7,

p. 280], [8, p. xxvi] is referring to does not hold in many other logics either,
for example, it does not hold in intuitionistic logic. The rule is also related to
the notion of complementation in the algebra used. According to Dunn and
Hardegree [10, p. 90] the classical principles of negation can be formulated
lattice-theoretically as follows:

(1) x 6 xcc (weak double negation)
(2) x 6 y implies yc 6 xc (contraposition)
(3) xcc = x (strong double negation)
(4) x ∧ xc = 0 (contradiction)
(5) x ∨ xc = 1 (tautology)

Although Heyting’s [13] intuitionistic logic rejects principles P3 and P5, the
following version of the reductio ad absurdum rule still holds in the intuition-
istic logic: Infer not-P having derived a contradiction from P. So intuitionistic
logic permits a form of indirect reasoning. It is also interesting to note that
Heyting algebra, see [15, pp. 1–38] or [25, pp. 38–60], is a more general no-
tion than Boolean algebra. Principles like 3 and 5 are readily seen to hold in
the Huntington-type abstract Boolean algebra. In fact, it can be shown that a
Heyting algebra is a Boolean algebra if the principle 3 holds for every element
of the algebra.
This does not remove the fact that one can not take negation of a Boolean

equation and expect the result to be a Boolean equation: as Brown remarks,
denying the equation a = b is not the same thing as, for example, asserting
the equation a = bc. However, according to Brown, in most applications, a
Boolean problem is not formulated as a theorem to be proved, the task is rather
to determine the consequents. This involves “forward chaining” to produce
the Blake canonical form, and the “forward chaining” can serve no purpose in
predicate logic.
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