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: This paper provides a sound and complete axiomatisa-
tion for constant domain modal logics without Boolean negation.
This is a simpler case of the difficult problem of providing a sound
and complete axiomatisation for constant-domain quantified rele-
vant logics, which can be seen as a kind of modal logic with a two-
place modal operator, the relevant conditional. The completeness
proof is adapted from a proof for classical modal predicate logic
(I follow James Garson’s presentation of the completeness proof
quite closely [10]), but with an important twist, to do with the ab-
sence of Boolean negation.

There is a natural way to add rules for first-order quantifiers to proof theories
for propositional relevant logics, and there is a natural way to add evaluation
conditions for quantifiers to the semantics for propositional relevant logics.
Kit Fine has shown us that these two natural ways of modelling first order rel-
evant logics do not match up [8]. Furthermore, Fine has given a semantics for

∗I dedicate this paper to Richard Sylvan. He had a deep and abiding interest in relevant
logics, including the problem of adding quantifiers in a semantically plausible fashion. His 1980
paper was an important addition to research in the area, but unfortunately, it contains errors
which seem insurmountable [17]. It seems fitting that in an ancestor of this paper I thought I
had solved the problems of constant domain quantified relevant logics by proving a stronger ver-
sion of my Lemma 4, only to find a hole in the ‘proof ’. I am also indebted to both Bernard Linsky
and Ed Zalta [13] and Max Cresswell [12] who have, in conversation and in print, convinced me
that constant domain semantics are philosophically interesting and defensible. Thanks to an
audience at the 1998 Australasian Association for Logic Conference, for helpful discussion on
an earlier version of this paper. Comments from an anonymous referee of the Journal, and from
Martin Bunder, proved helpful in clarifying the presentation.
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the natural proof-theory for quantified relevant logics [7]. Unfortunately, the
semantics is quite baroque. This has meant that the semantics has not pro-
duced any worthwhile results: The semantics has not been used to prove any
interesting metatheoretical results about quantified relevant logics. Further-
more, the semantics has not been given anything like a plausible philosophical
justification, or any new understanding of the unique features of quantified
relevant logics.

In this paper I will begin to explore the constant domain quantified relevant
logics by starting with a simpler case — constant domain modal logics without
Boolean negation. That is, I will examine the proof theory and semantics for
logics extending distributive lattice logic with extra one place operators. I will
provide a sound and complete axiomatisation of the basic normal modal logics
extending distributive lattice logic with quantifiers. The completeness proof
is adapted from a completeness proof for classical modal predicate logic, but
with a twist, seemingly required in the absence of Boolean negation.
These logics are a simplification of relevant logics, which extend distribu-

tive lattice logic with the two place intensional connectives of implication and
fusion. I end this paper by gesturing towards what needs to be done to extend
the results of this paper to the more general setting of relevant logics.

1  
I will motivate the propositional fragment of our logic semantically. We are
interested in the relation of consequence defined on frames.

 1 A frame is a partially ordered set 〈P,v〉 equipped with a num-
ber of binary relations of accessibility.

The extensional fragment of the language is interpreted in the usual way. We
have two propositional constants > and ⊥, and two binary connectives ∧ and
∨. The “true at” relation 
 between points and propositions is defined recur-
sively.1 Wehave a case for atomic propositions which determines the behaviour
of the relation v, and the other cases determine the truth of complex propo-
sitions in terms of their constituents.

 2 An evaluation relation satisfies the following clauses.

• If x v x ′ and x 
 p then x ′ 
 p.

• x 
 A ∧ B iff x 
 A and x 
 B.

• x 
 A ∨ B iff x 
 A or x 
 B.

• x 
 >.
1The expression “x 
 A” may be read as “x supports A”, “x forces A”, “x makes A true” or

“A is true at x” according to taste.
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• x 6
 ⊥.

We do not have Boolean negation for we are interested in ensuring that points
can be ordered. Conjunction, disjunction,> and⊥ preserve the hereditary prop-
erty of evaluations. If x 
 A and x v x ′ then x ′ 
 A too. Boolean negation on
points (defined by setting x 
 −A iff x 6
 A) destroys this property. Similarly,
the material conditional of classical logic is not allowed, since with ⊥, it may
be used to define Boolean negation.2 Distributive lattice logic is no different to
the fragment of classical logic without Boolean negation. All of the standard
properties in this language (associativity and commutativity of conjunction and
disjunction, for example) hold.
This much is straightforward. The logic becomes more interesting when

we add operators which exploit the nature of frames. We do this by using bi-
nary relations on frames. We allow for four different kinds of modal operators,
� and ♦ are familiar positive operators (called A and I operators) and ∼ and
_ are less familiar negative operators (called E and O) respectively. They are
evaluated like this.3

 3 TheA, E, I andO operators have the following evaluation con-
ditions:

• x 
 �A iff for all y where xRy, y 
 A.

• x 
 ∼A iff for no y where xCy, y 
 A.

• x 
 ♦A iff for some y where xSy, y 
 A.

• x 
 _A iff for some y where xDy, y 6
 A.

In the presence of Boolean negation it suffices to define one of these kinds of
operators (say �) and to define each of the others in terms of it (as ♦ is of
the form −�−, ∼ of the form �− and _ of the form −�.) In the absence of
Boolean negation this strategy may not work, so we will take all four sorts of
operators as primitive.
The hereditary result on formulae works only under special conditions on

each accessibility relation. If x 
 ♦A and x v x ′ then to ensure that x ′ 

♦A we need a condition relating S and v. The requisite conditions for each
operator are listed below.4

2It follows, then, that in the presentation of the logic of distributive lattices, we need to
express it in terms of sequents of the form A ` B, instead of theorems of the form ` B. The
language has conditional operator with which to convert A ` B to ` A ⊃ B.

3If you are familiar with the theory of the syllogism, you will note why A, E, I and O for the
families of one-place connectives. � is defined by a clause of the form allA isB, ♦ by one of the
form someA isB, ∼ by one of the form noA isB, and_ by one of the form someA is notB. These
are the four syllogistic forms.

4These conditions are discussed in a number of places. The early references are in discussions
of intuitionistic modal logic, due to Fischer-Servi [9] and Ewald [6], and discussed at length in
Alex Simpson’s thesis [19]. They also arise naturally in Dunn’s gaggle theory [2, 3].
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• If x ′Ry ′ and x v x ′ then there is some y v y ′ where xRy.

• If x ′Cy and x v x ′ then there is some y ′ w y where xCy ′.

• If xDy ′ and x v x ′ then there is some y v y ′ where x ′Dy.

• If xSy and x v x ′ then there is some y ′ w y where x ′Sy ′.

Each of the conditions on accessibility relations connects the accessibility re-
lation with the behaviour of the inclusion relation on the frame. The inclusion
relation can be read as the relation in increasing informativeness. If x v y then all
of the information given by x is also given by y. Then, thinking of xCy as x is
compatible with y motivates the condition on C. Similarly, reading xRy as those
things necessary in x are true in y, and xSy as y is possible relative to x, motivates the
conditions for R and S. (The interpretation of D is left an an exercise for the
interested. See An Introduction to Substructural Logics [16, Chapter 11] for more
details.)

 4 If M is a model, we say that A `M B (A entails B on M) just
when for each point x, if x 
 A then x 
 B. Similarly, if F is a frame, A `F B

if and only if A `M B for each modelM on F. Finally, if F is a class of frames,
A `F B if and only if A `F B for each frame F ∈ F.

The interpretation of the extensional connectives∧,∨,>,⊥ ensures that they
are standard distributive lattice operators.

 5 A binary relation ` on propositions is a distributive lattice rela-
tion iff the following conditions hold:

• It is transitive.

• The two-place connective of conjunction is the greatest lower bound for `.
That is, C ` A ∧ B if and only if C ` A and C ` B.

• The two-place connective of disjunction is the least upper bound for `.
That is, A ∨ B ` C if and only if A ` C and B ` C.

• Conjunction and disjunction are tied together with the distribution law:
A ∧ (B ∨ C) ` (A ∧ B) ∨ C.

• There are special propositions > and ⊥ such that A ` > and ⊥ ` A for
each A.

Each of the forms of consequence, `M, `F and `F are distributive lattice
consequence relations. The other modal operators satisfy simple conditions,
which we list in another definition.

 6 These are the inference conditions for each kind of operator.
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• The A operator conditions are the inference from A ` B to �A ` �B,
and the entailments �A ∧ �B ` �(A ∧ B) and > ` �>.

• The E operator conditions are the inference from A ` B to ∼B ` ∼A,
and the entailments ∼A ∧ ∼B ` ∼(A ∨ B) and > ` ∼⊥.

• The I operator conditions are the inference from A ` B to ♦A ` ♦B,
and the entailments ♦(A ∨ B) ` ♦A ∨ ♦B and ♦⊥ ` ⊥.

• The O operator conditions are the inference from A ` B to_B ` _A,
and the entailments_(A ∨ B) ` _A ∨ _B and_> ` ⊥.

It is not difficult at all to verify that each of these conditions describes the
behaviour of the modal operators and the consequence relations `M, `F and
`F. These operators can be defined in pairs in the style of Dunn’s Gaggle The-
ory [2, 3, 5]. For example, A and I operators go together. If � and ♦ satisfy the
two-way rule

♦A ` B if and only if A ` �B

then ♦ is an I operator and � is an A operator. Similarly, if ∼ and ¬ satisfy the
two-way rule

A ` ∼B if and only if B ` ¬A

then they are both E operators. Finally, if_ and^ both satisfy the rule

_A ` B if and only if^B ` A

then they are both O operators. These rules characterise the consequence
relation `F of the class of all frames. Soundness is trivial to verify. For com-
pleteness we can construct a canonical model out of prime theories. If you are
interested in the logic of a smaller class of frames, those in which the accessibil-
ity relations satisfy interesting properties, you show that the canonical model
of such a logic is one of those frames. If you are unlucky and the canonical
frame doesn’t satisfy the extra conditions, you will need to do more work by
constructing a different frame.
This kind of semantic story has very many ancestors. My approach here

is most indebted to the work done in the semantics for relevant logics due to
Routley and Meyer [18], with further generalisations due to Dunn [2, 4].5

5The inferences at the heart of this account, connecting � with ♦, ∼ with ¬, and _ and
^ are more than reminiscent of the display conditions of Nuel Belnap’s Display Logic [1]. In
each case, we show how to “display” the formula under each operator, in either antecedent or
consequent position. However, Belnap’s Display Logic is much more than this: it provides an
essentially proof-theoretic account of consequence, in which object-level connectives or operators
are governed by their connections with other structures in sequents. None of those considera-
tions plays a role here.
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We can extend our relation ` to relate sets of propositions, by setting Σ ` ∆

to be true just when some finite conjunction
∧

i Ai of members of Σ entails
some disjunction

∨
i Bi of members of ∆. We also use the convention that

Σ ` ∅ iff Σ ` ⊥, and ` ∆ iff > ` ∆, and we sometimes write these as ‘Σ ` ’
and ‘ ` ∆’ respectively. (The top and bottom elements > and ⊥ are the empty
conjunction and disjunction respectively.) By the soundess and completeness
results and compactness theorem for these logics, this definition of set-based
consequence is equivalent to the obvious frame condition: Σ `M ∆ if and only
if each point x forcing each element of Σ also forces some element of ∆. There
is much more that we could do to examine the propositional logics. But for
now, we will look at extending the logics to deal with quantifiers.

2   
Our aim is to study the addition of constant domain quantifiers to this breed
of model. To add quantifiers to the language, we enrich our language with pred-
icates, constants, variables and the quantifiers ∀ and ∃. We will define formulae
in such a way that we allow formulae with free variables, but we keep sentences
to be formulae in which every occuring variable is bound.
For a constant domain model, we have not only a frame, but a non-empty

domain of objectsD. Each n-place predicate F is interpreted by a set ||F||x of n-
tuples ofD-elements at each point x in the frame. This satisfies the hereditary
condition that if x v y then ||F||x ⊆ ||F||y.
Terms (either constants or variables) are interpreted by domain elements,

independently of the point in the model. (All terms are rigid.) Constants c are
interpreted by objects ||c|| ∈ D. Variables v are interpreted by an assignment
a which maps variables onto objects. We interpret v by ||v|| = a(v), where
a is an assignment. In either case, if t is a term, we use ‘||t||a’ to name its
interpretation, even in the case of constants, where the assignment is irrelevant
to the interpretation.
Then we interpret formulas by relativising truth: not only to points in the

model, but instead to pairs of points and assignments. Given an assignment a,
and a point x we have

• x, a 
 Ft1 · · · tn iff 〈||t1||a, . . . , ||vn||a〉 ∈ ||F||x

Then to define the quantifiers, we have the standard conditions:

• x, a 
 ∀vA iff for each d ∈ D, x, a[v := d] 
 A.

• x, a 
 ∃vA iff for some d ∈ D, x, a[v := d] 
 A.

where a[v := d] is athe v-variant of the assignment a, which varies from a only
by assigning the variable v the value d.
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The connectives are interpreted in the usual way, as is the relation of conse-
quence, relative to models, frames and classes of frames. Our job is to investi-
gate these relations of consequence. The first thing to note is that the standard
introduction and elimination rules for quantifiers hold.

   : For any A with v free we have

∀vA(v) `M A(c) and A(c) `M ∃vA(v)

for any model M, where A(c) is found by replacing the free occurences of v

in A(v) by the name c. These laws follow immediately from the evaluations
of ∀ and ∃. As corollaries of these conditions we have the rules introducing
quantifiers as follows:

A(c) ` B
[∀ left]

∀vA(v) ` B

B ` A(c)
[∃ right]

B ` ∃vA(v)

More interestingly, we have rules for introducing quantifiers on the other side
of the turnstile:

[∀ right] If A `F B(c) and c does not occur in A then A `F ∀vB(v).

[∃ left] If A(c) ` B and c does not occur in B then ∃vA(v) ` B.

These hold in any frame F. If A `F B(c) then any interpretation in which
x, a 
 A, we must have x, a 
 B(c). Now x, a[v := d] 
 B if and only if
x, a 
 ′ B(c) for the variant interpretation 
 ′ which varies from 
 only by
setting ||c|| = d. So, x, a 
 ∀vB(v) if and only if x, a 
 ′ B(c) for every such
variant 
 ′. However, 
 ′ and 
 do not disagree on the formula A, as c does not
occur inA, so if x, a 
 B(c) (which we have assumed) we also have x, a 
 ′ B(c)

too, so we have our result. Similar reasoning verifies the case of the existential
quantifier.
These rules ensure that if v is not free in A, then ∀vA and ∃vA are equiv-

alent to A. For ∀vA ` A, and since v is not free in A, we have A ` A(c) for
some c not in A (since A(c) is the very same formula as A!) so A ` ∀vA.
These rules are standard and work for almost any notion of logical conse-

quence with quantifiers. The next results begin to exploit the power of the
constant domains.

 : The quantifiers distribute over conjunction and dis-
junction in the following way.

∀v(A ∨ B) `M ∀vA ∨ ∃vB ∃vA ∧ ∀vB `M ∃v(A ∧ B).

These results hold in classical quantificational logic, but the first does not in
quantified intuitionistic logic. However, they are straightforward applications
of the rules. We will not tarry to verify them here.
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These rules have simpler cases when B does not contain a free v. Since in
that case B is equivalent to ∃vB and ∀vB we have ∀v(A ∨ B) ` ∀vA ∨ B, and
∃vA ∧ B ` ∃v(A ∧ B).
Intuitionistic logic contains the second of these laws but not the first. Nei-

ther of these laws follows from distributive lattice logic together with the in-
troduction and elimination laws.6
The most interesting results show the interaction between the quantifiers

and the extra operators. These results are jointly called the Barcan Laws.

 : For any modelM and any formula A, we have

�∀vA a`M ∀v�A ♦∃vA a`M ∃v♦A

∼∃vA a`M ∀v∼A _∀vA a`M ∃v_A

These results commute a quantifier over a one-place operator. They essentially
rely on the fact that the domainD of quantification stays constant from point
to point. They are straightforward to verify. For example, x, a 
 ∼∃vA if and
only if for no y where xCy does y, a 
 ∃vA. That is, iff for no y where xCy

does y, a[v := d] 
 A for some d ∈ D, and this just means that for every
d ∈ D, for no y does y, a[v := d] 
 A. This is equivalent to saying that for
every d ∈ D, x, a[v := d] 
 ∼A, which is simply x 
 ∀v∼A as desired. If the
domain D switched from point to point, we could not reason like this. The
other Barcan laws are verified in a similar fashion.
These conditions: the introduction/elimination laws, the distributive laws,

and the Barcan laws, jointly give us a good picture the behaviour of the uni-
versal and existential quantifiers in constant domain models an frames. It is
our job to show that these laws determine the behaviour of the quantifiers on
constant domain frames. To do this, however, we need somemore tools. Some-
what surprisingly, we need two extra connectives, defined on frames, in order
to prove that these rules characterise the logic of constant domain quantifica-
tion on frames.

3  
It is well known that you can conservatively add a connective⊃ to the language
of distributive lattice logic, satisfying the condition

A ∧ B ` C if and only if A ` B ⊃ C

6For a model in which the introduction and elimination rules hold, use frames with decreasing
domains (if x v x ′ then D(x) ⊇ D(x ′)). Set a universally quantified statement to be true at
x just when every instance is true at x. Existentially quantified sentences are true at x just
when some instance is true at some ancestor of x. These are the dual conditions to intuitionistic
quantifiers, and they verify the distribution of univeral quantifiers over disjunction, but not
existential quantifiers over conjunction.
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This is intuitionistic implication. (We will call this step [∧ to ⊃] from left-to-
right, and [⊃ to ∧] from right to left.) The semantics is reasonably straight-
forward. We require that frames be extended with a partial order v, and that
atomic evaluations be preserved up the order. We set x 
 A ⊃ B iff for each y

where x v y, if y 
 A then y 
 B.
Note that with this addition, the unary operator ¬ defined by setting as

¬A to A ⊃ ⊥ is an E operator. A ⊃ > and ⊥ ⊃ A are both equivalent to >,
and > ⊃ A is equivalent to A.
It is less well known that it is just as easy to extend things in the other di-

rection. We can add conservatively add a connective− satisfying the condition

A ` B ∨ C if and only if A − B ` C

You can read ‘A − B’ as ‘A without B’.7 The clause is the exact dual of that for
⊃. (We will call this step [∨ to −] from left-to-right, and [− to ∨] from right
to left.) For each x, x 
 A − B iff there is some y v x where y 
 A and y 6
 B.
This preserves the hereditary condition, and so, is a conservative extension of
intuitionistic propositional logic and therefore, of distributive lattice logic.8
The addition of subtraction and implication means that we can work “under”
conjunction in antecedent position and disjunction in consequent position.
Any fact of the form C∧A ` B∨Dmay be transformed into (C∧A)−D ` B

(which may prove useful, if B has a special property, such as having a variable
free not present in the other formulas) or into A ` C ⊃ (B ∨ D) (if we wish to
isolate A). These properties will play a role in the derivation of crucial lemmas
in the completeness proof in the next section.
Note too that_, defined by setting_A as >− A is an O operator. ⊥− A

and A −> are both equivalent to ⊥, while A −⊥ is equivalent to A.
You get conditions tying quantifiers to the conditional and to subtraction.

∀v(A ⊃ B) `M ∀vA ⊃ ∀vB ∃vB − ∃vA `M ∃v(B − A)

These can be verified semantically in a straightforward fashion. More inter-
esting is the fact that they follow given the rules of proof already at hand. We
start with the subtraction case as it is less familiar. The proof uses the rules
we have introduced, governing subtraction, and the existential quantifier. The
only other principle implicitly appealed to is the commutativity of disjunction.
We use the principle that from B − A ` C we can infer B ` A ∨ C, and then,
B ` C ∨ A and to return, B − C ` A. Instead of making the commutation step
of the disjunction explicit, we present such a sequence of inferences as leading
from B − A ` C to B ` A ∨ C, using [− to ∨] and then we pull the other

7Subtraction is regularly rediscovered in the literature. The first reference to it of which I
am aware is in the work of Rauszer [14, 15].

8It is not a conservative extension to intuitionistic predicate logic, however. As we shall see,
with subtraction, we can prove ∀x(A ∨ B) ` ∀xA ∨ ∃vB
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disjunct of the disjunction back to form B − C ` A, using [∨ to −].

B(c) − A(c) ` B(c) − A(c)
[− to ∨]

B(c) ` A(c) ∨ (B(c) − A(c))
[∨ to −]

B(c) − (B(c) − A(c)) ` A(c)
[∃ right]

B(c) − (B(c) − A(c)) ` ∃vA
[− to ∨]

B(c) ` ∃vA ∨ (B(c) − A(c))
[∃ right]

B(c) ` ∃vA ∨ ∃v(B − A)
[∃ left]

∃vB ` ∃vA ∨ ∃v(B − A)
[∨ to −]

∃vB − ∃vA ` ∃v(B − A)

Furthermore, we have the “flipping” rules

∀v(A ⊃ B) ` ∃vA ⊃ B B − ∀vA ` ∃v(B − A)

where v is not free in B. These are verified similarly. Here is the subtraction
case.

B − A(c) ` B − A(c)
[∃ right]

B − A(c) ` ∃v(B − A)
[− to ∨]

B ` A(c) ∨ ∃v(B − A)
[∨ to −]

B − ∃v(B − A) ` A(c)
[∀ right]

B − ∃v(B − A) ` ∀vA
[− to ∨]

B ` ∀vA ∨ ∃v(B − A)
[∨ to −]

B − ∀vA ` ∃v(B − A)

Finally, and most interestingly, the introduction and elimination laws, together
with implication and subtraction, is enough to verify the distribution laws.

A(c) ∨ B(c) ` A(c) ∨ B(c)
[∀ left]

∀v(A ∨ B) ` A(c) ∨ B(c)
[∨ to −]

∀v(A ∨ B) − A(c) ` B(c)
[∃ right]

∀v(A ∨ B) − A(c) ` ∃vB
[− to ∨]

∀v(A ∨ B) ` A(c) ∨ ∃vB
[∨ to −]

∀v(A ∨ B) − ∃vB ` A(c)
[∀ right]

∀v(A ∨ B) − ∃vB ` ∀vA
[− to ∨]

∀v(A ∨ B) ` ∀vA ∨ ∃vB

These connectives are definable on any constant domain frame using the struc-
ture already existing on that frame. Much more can be said about them (espe-
cially subtraction, which is much less studied than implication). However, all
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of this is preliminary to our present project of adding constant domain quanti-
fiers to our logic. It will become clear why having implication and subtraction
at our disposal helps when we get to the completeness proof.

4 
For completeness we will construct a canonical frame and model. We will show
that if Σ 6` ∆ (in the proof theory) then there is a point in the canonical model
in which every element of Σ is true but every element of ∆ is false. The com-
pleteness proof is not too different from that in either classical modal logic
or that in propositional relevant logics. It is handy to define pairs of sets of
formulae. The left member of a pair is the set of formulae we wish to make
true and the right member of the pair is the set of formulae we wish to see fail.
The proof here is a fairly straightforward adaptation of the classical result (I
follow reasonably closely the presentation of Garson [10]), with the operators
of intuitionistic implication and subtraction doing their duty in the absence of
Boolean negation).

 7 The pair 〈Σ,∆〉 is said to be a `-pair (or simply, a pair in what
follows) if Σ 6` ∆. A pair 〈Σ,∆〉 is quantifier suited iff the following two condi-
tions hold:

• If Σ ` ∆ ∪ {A(c)} for each c then Σ ` ∆ ∪ {∀vA} for each v.

• If Σ ∪ {A(c)} ` ∆ for each c then Σ ∪ {∃vA} ` ∆ for each v.

A pair 〈Σ,∆〉 is said to be full in a language L iff Σ ∪ ∆ = L.

Our canonical frame will be constructed from full quantifier-suited pairs from
a particular language. The left set in such a pair is a good match for a point in
a model. The next result is simple to prove.

 1 If 〈Σ,∆〉 is a full pair, it follows thatΣ is a prime theory. If 〈Σ,∆〉 is full and
quantifier-suited then ∃vA ∈ Σ if and only ifA(c) ∈ Σ for some name c, and ∀vA ∈ Σ

if and only ifA(c) ∈ Σ for all names c.

A prime theory satisfies each of the required distributive lattice conditions. If
Σ is a prime theory then > ∈ Σ, ⊥ 6∈ Σ, A ∧ B ∈ Σ if and only if A,B ∈ Σ, and
A∨B ∈ Σ if and only if eitherA or B is in Σ. If the pair is also quantifier-suited
then the quantifiers are interpreted in the desired way too. ∀vA ∈ Σ if and only
ifA(c) ∈ Σ for each name c. ∃vA ∈ Σ if and only ifA(c) ∈ Σ for some name c.
Now we show how toconstruct full quantifier-suited pairs. Firstly, we have

the technique needed to get one in the first place.

 2 (   1) If 〈Σ,∆〉 is a pair then there is also a full
quantifier-suited pair 〈Σ ′, ∆ ′〉 extending 〈Σ,∆〉, in a new language extending the origi-
nal language by at most countably many new constants.
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Proof: This is achieved by enumerating the formulae in the language A0, A1,
. . . and defining the pair 〈Σ0, ∆0〉 to be 〈Σ,∆〉, and 〈Σn+1, ∆n+1〉 is defined as
follows:

• If Σn ∪ {An} 6` ∆n and An is not of the form ∃vB then 〈Σn+1, ∆n+1〉 =

〈Σn ∪ {An}, ∆n〉.

• If Σn ∪ {An} 6` ∆n and An is of the form ∃vB then 〈Σn+1, ∆n+1〉 =

〈Σn ∪ {An, B(c)}, ∆n〉, where c is a new constant not appearing in Σn,
An or ∆n.

• If Σn ∪ {An} ` ∆n and An is not of the form ∀vB then 〈Σn+1, ∆n+1〉 =

〈Σn, ∆n ∪ {An}〉.

• If Σn ∪ {An} ` ∆n and An is of the form ∀vB then 〈Σn+1, ∆n+1〉 =

〈Σn, ∆n ∪ {An, B(c)}〉, where c is a new constant not appearing in Σn,
An or ∆n.

Then we set 〈Σ ′, ∆ ′〉 to be 〈
⋃

n Σn,
⋃

n ∆n〉. This is a partition of the formulas
by construction: every formula An is either in Σ ′ or ∆ ′.
We next show that it is a pair: We show that Σ ′ 6` ∆ ′. To show this,

given the compactness of ` it suffices to show that Σn 6` ∆n for each n. We
show this by induction on n. The result holds for n = 0 by hypothesis. For
n + 1, suppose Σn+1 ` ∆n+1 but that Σn 6` ∆n. It follows that we cannot be
in the first case of the construction, for that assurs Σn+1 6` ∆n+1 explicitly.
Suppose An is of the form ∀vB, and that while Σn ∪ {An} 6` ∆n we have
Σn ∪ {An, B(c)} ` ∆n for a c new to Σn and ∆n and An. Therefore there
is a conjunction C of members of Σn, and a disjunction D from ∆n such that
C ∧ An ∧ B(c) ` D. It follows that ∃v(C ∧ An ∧ B) ` D by existential
introduction . By the existential distribution fact we have C ∧ An ∧ ∃vB ` D

(c is new to C, An and D) and hence C ∧ An ` D, contrary to our hypothesis
that Σn ∪ {An} 6` ∆n. So, this case assures us that Σn+1 6` ∆n+1.
Now suppose we are in the third case, and that both Σn ∪ {An} ` ∆n

and that Σn ` ∆n ∪ {An}. Then for some C ∈
∧

Σn and D ∈
∨

∆n we have
C∧An ` D and C ` An∨D. DisjoiningD to the first, we have (C∧An) ` D,
and conjoining C to the second, we have C ` C∧ (An ∨D). Distribution gives
us C ` D, which we already know not to be the case, since Σn 6` ∆n by
hypothesis. So in this case too, Σn+1 6` ∆n+1.
The final case is similar, except that we know that An has the form ∃vB,

and we have C ∧ An ` D and C ` An ∨ B(c) ∨ D. Conjoining C we get
C ` C∧(An∨B(c)∨D) for each c (and in particular, a c absent fromC,An and
D) and henceC ` ∀v(C∧(An∨B∨D)) ` C∧(An∨∀vB∨D) = C∧(An∨D),
and we proceed as before to get C ` D, which contradicts the assumption,
giving then Σn+1 6` ∆n+1.
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The pair 〈Σ ′, ∆ ′〉 is quantifier suited by construction too. If Σ ′ ` ∆ ′ ∪
{A(c)} for each constant c then we must have A(c) ∈ Σ ′ for each c, and hence
∀vA ∈ Σ ′, giving Σ ′ ` ∆ ′ ∪ {∀vA}. The existential quantifier case is dual. ]

Now once we have a domain, we want to keep it. This is where the rather weak
definition of quantifier-suitedness comes in.

 3 (   2) If 〈Σ,∆〉 is a quantifier-suited pair, and if
one of Σ and ∆ is finite, then there is a full quantifier-suited pair 〈Σ ′, ∆ ′〉 extending
〈Σ,∆〉, in the same language.

To prove this lemma we need the following simple lemma.

 4 (  ) If 〈Σ,∆〉 is a quantifier-suited pair and X

and Y are finite sets of formulas in the same language, and one of Σ and ∆ is finite, then
〈Σ ∪ X,∆ ∪ Y〉 is also quantifier-suited.

This is the result for which we need subtraction and intuitionistic implication.
Proof: Here is the case where Σ is finite. By abuse of notation, I will let “X”
and “Y” stand for the formulae

∧
X and

∨
Y. Let B be the formula

∧
Σ.

Now, if Σ∪X∪{A(c)} ` ∆∪Y for each name c, we have B∧X∧A(c) ` ∆∪Y,
and equivalently, (B ∧ X ∧ A(c)) − Y ` ∆. So, by the quantifier-suitedness of
〈Σ,∆〉 we have (∃v)((B∧X∧A)−Y) ` ∆. As a result, (B∧X∧∃vA)−Y ` ∆,
and hence Σ ∪ X ∪ {∃vA} ` ∆ ∪ Y as desired.
IfΣ∪X ` ∆∪Y∪{A(c)} for each name c, we have (B∧X)−(Y∨A(c)) ` ∆ for

each c, and hence ∃v((B∧X)−(Y∨A)) ` ∆. But this gives (B∧X)−(Y∨∀vA) `
∆ and hence Σ ∪ X ` ∆ ∪ Y ∪ {∀vA} as desired.
The case for finite ∆ is dual, using implication instead of subtraction. ]

Given the finite addition lemma, we can prove the second pair extension lemma.
Proof: The process is similar to that used in the proof of the first pair exten-
sion lemma. Now, however, instead of adding a new witness for each existential
quantifier, we show that an old one will do.

• If Σn∪ {An} 6` ∆n andAn is not of the form ∃vB, then 〈Σn+1, ∆n+1〉 =

〈Σn ∪ {An}, ∆n〉.

• If Σn ∪ {An} 6` ∆n and An is of the form ∃vB, then 〈Σn+1, ∆n+1〉 =

〈Σn∪ {An, B(c)}, ∆n〉, for some constant c where Σn∪ {An, B[v := c]} 6`
∆n.

• If Σn∪ {An} ` ∆n andAn is not of the form ∀vB, then 〈Σn+1, ∆n+1〉 =

〈Σn, ∆n ∪ {An}〉.

• If Σn ∪ {An} ` ∆n and An is of the form ∀vB, then 〈Σn+1, ∆n+1〉 =

〈Σn, ∆n∪ {An, B(c)}〉, for some constant c where Σn 6` ∆n∪ {An, B(c)}.
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We need show that at each stage n, if we use the second or fourth lines of
the definition, an appropraite c can be found. For this, we appeal to the finite
addition lemma: Each 〈Σn, ∆n〉 is quantifier-suited, as it is a finite extension
to the quantifier-suited 〈Σ,∆〉, and one of Σ and ∆ is finite.
Now, suppose we are in the second case. If there is no suitable c such that

Σn ∪ {An, B[v := c]} 6` ∆n. It follows that for each c, Σn ∪ {An, B(c)} ` ∆n.
Therefore since Σn is quantifier suited, Σn ∪ {An} ` ∆n. However, this is a
contradiction. The fourth case is dual. ]

Now we must construct theories to use in the canonical model. The strat-
egy is simple. If Σ 6` ∆, we extend 〈Σ,∆〉 to a full quantifier-suited 〈Σ ′, ∆ ′〉.
Then we use the class of full quantifier-suited pairs in this language as our
canonical frame. Since they are full and quantifier-suited we know that these
points interpret the extensional part of the language adequately. We must en-
sure that we interpret the modal operators well too. We define the accessibility
relations in the obvious way.

• ΣRΓ if and only if for each A, if �A ∈ Σ then A ∈ Γ .

• ΣSΓ if and only if for each A, if A ∈ Γ then ♦A ∈ Σ.

• ΣCΓ if and only if for each A, if ∼A ∈ Σ, then A 6∈ Γ .

• ΣD∆ if and only if for each A, if A 6∈ Γ , then_A ∈ Σ.

These conditions ensure that the accessibility relations satisfy the required in-
teractions with the ordering on the canonical frame. This order is the subsethood
relation on the theories.
These definitions of accessibility relations immediately ensure half of the

evaluation conditions for modal operators. If �A ∈ Σ then for each Γ where
ΣRΓ , A ∈ Γ . To complete the picture we wish to show that if �A 6∈ Σ then
there is some Γ where ΣRΓ and A 6∈ Γ . This is slightly more difficult than in
the propositional case, for we need to not only construct the theory, but also
ensure that it is quantifier-suited in the same language. To do this we use the
following lemma. This is the point at which the Barcan Laws are used.

 5 If 〈Σ,∆〉 is full and quantifier suited, then

• If�B 6∈ Σ then 〈�−1Σ, {B}〉 is a quantifier-suited pair.

• If¬B 6∈ Σ then 〈{B},¬−1Σ〉 is a quantifier-suited pair.

• If ♦B ∈ Σ, then 〈{B},♦−1∆〉 is a quantifier-suited pair.

• If_B ∈ Σ, then 〈_−1∆, {B}〉 is a quantifier-suited pair.

• IfA ⊃ B 6∈ Σ, then 〈Σ ∪ {A}, {B}〉 is a quantifier-suited pair.

• IfA − B ∈ Σ, then 〈{A}, {B} ∪ ∆〉 is a quantifier-suited pair.
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Proof: Let’s look at three cases: for �, _ and subtraction. First, the � case:
〈�−1Σ, {B}〉 is a pair iff

∧
i Ai 6` B for any finite set of Ais in �−1Σ. But this

is simple: if
∧

i Ai ` B, then �
∧

i Ai ` �B, and hence
∧

i �Ai ` �B, giving
�B ∈ Σ (since each �Ai ∈ Σ) contrary to our assumption.
By the finite addition lemma, 〈�−1Σ, {B}〉 is quantifier suited if 〈�−1Σ, ∅〉

is. And for this we first need to show that if �−1Σ ` A(c) for each c then
�−1Σ ` ∀vA. So, if

∧
i Ai ` A(c) for each c, it follows that �

∧
i Ai ` �A(c)

for each v, and hence,
∧

i �Ai ` �A(c), giving Σ ` A(c) for each c. Since
〈Σ,∆〉 is quantifier suited, it follows that ∀v�A ∈ Σ. The Barcan formula then
gives �∀vA ∈ Σ. As a result, �−1Σ ` ∀vA as desired.
For the second half, it is sufficient to show that if �−1Σ ∪ {A(c)} ` ⊥ for

each c then�−1Σ ` A(c) ⊃ ⊥ for each c, so the previous result applies, giving
us�−1Σ ` ∀v(A ⊃ ⊥) and hence�−1Σ ` ∃vA ⊃ ⊥ giving�−1Σ∪ {∃vA} ` ⊥
as desired.
Now for the_ case. First we show that 〈_−1∆, {B}〉 is a pair. If

∧
i Ai ` B

where Ai ∈ _−1∆, then by the O conditions, _B ` _
∧

i Ai but _
∧

i Ai `∨
i _Ai. But _B ∈ Σ, and this gives Σ ` ∆ contrary to our assumption. So

〈_−1∆, {B}〉 is a pair.
To show that it is quantifier suited, it suffices to show that 〈_−1∆, ∅〉 is

quantifier suited. For this, suppose _−1∆ ` C(c) for each c. We then have
_C(c) ` _

∧
i Ai and hence _C(c) `

∨
i _Ai (for a choice of the Ai from

_−1∆). So, _C(c) ` ∆ and by the quantifier suitedness of the original pair,
∃v_C ` ∆. By the Barcan Law for _ we get _∀vC ` ∆, and hence _−1∆ `
∀vC as desired.
For the second half, it is sufficient to show that if_−1∆ ∪ {A(c)} ` ⊥ for

each c then _−1∆ ` A(c) ⊃ ⊥ for each c and as before, the previous result
applies, giving us _−1∆ ` ∀v(A ⊃ ⊥) and hence _−1∆ ` ∃vA ⊃ ⊥ giving
_−1∆ ∪ {∃vA} ` ⊥ as desired.
Finally, for subtraction, we wish to show that 〈{A}, {B} ∪ ∆〉 is a pair if

A − B 6∈ Σ. This is immediate, for if A ` {B} ∪ ∆, then A − B ` ∆. To
show that it is quantifier suited, we wish to show that 〈∅, {B} ∪ ∆〉 is quantifier
suited. For this, if C(c) ` {B} ∪ ∆ for each c, we have C(c) − B ` ∆ for each c

and by the quantifier suitedness of the original pair, ∃v(C − B) ` ∆ and hence
∃vC − B ` ∆ (the v can be chosen to be absent from B) giving ∃vC ` ∆ ∪ {B}.
Furthermore, if > ` {C(c), B} ∪ ∆ for each c, we have > − C(c) ` {B} ∪ ∆ for
each c, giving us ∃v(>− C) ` {B}∪∆ and hence > ` {∀vC, B}∪∆ as desired. ]
These lemmas jointly give us our completeness proof.

 6 () If Σ 6` ∆ then there is some model M in which
Σ 6`M ∆.
Proof: Extend 〈Σ,∆〉 to a full quantifier suited pair 〈Σ ′, ∆ ′〉 by the first pair
extension lemma. Construct a frame on the set of all full quantifier suited pairs
on the language of 〈Σ ′, ∆ ′〉. The domain of this frame is the set of constants
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in the language. The extension of a predicate F at the a point 〈Γ, Π〉 is the set
of n-tuples 〈c1, . . . , cn〉 such that Fc1 · · · cn ∈ Γ . The lemmas proved above
ensure that all of the connective evaluation conditions hold in the canonical
frame, such that 〈Γ, Π〉 
 A if and only if A ∈ Γ . ]

5 
    ? Much more should be said about the
new connectives ⊃ and −. Can the finite addition lemma be proved without
them? This would certianly be an advantage. Are these connectives meaningful
in any logics for which we want constant domain frames?

  We can let E! be an existence predicate, and
define (∀E!x)A to be (∀x)(E!x ⊃ A), and (∃E!x)A to be (∃x)(E!x ∧ A). This
mimics increasing domain logics in a familiar fashion.
More oddly, we can define N! as a nonexistence predicate, to define (∀N!x)A

as (∀x)(N!x ∨ A), and (∃N!x) to be (∃x)(A − N!x). This mimics decreasing
domain logics. Is there any use for this dualisation of the intuitionistic case?

    ? None of this works in the
absence of distribution of conjunction over disjunction. For an analagous se-
mantics to the frames presented here, you should examine the linear logic lit-
erature on phase spaces [11, 16].

  An obvious pair of conditions to want� and ♦ to satisfy
is what I call the Dunn Conditions [5]:

�(A ∨ B) ` �A ∨ ♦B ♦A ∧ �B ` ♦(A ∧ B)

(They should look reminisicent of the quantifier distribution laws.) These are
valid if� and♦ use the same accessibility relation. To prove the addition sound
and complete for the obvious class of frames we need a stronger version of the
finite addition lemma. For given �A 6∈ Σ (with a quantifier suited pair 〈Σ,∆〉)
we need 〈�−1Σ, {A} ∪ ♦−1∆〉 to be quantifier suited. At the new accessible
point, everything necessary at Σ is true, and everything not possible at Σ is not
true. The current proof of the finite addition lemma requires that one of the
parts of the pair be finite. This does not hold here. To prove completeness we
need a stronger version of the finite addition lemma or a completely different
proof.

I  F Implication and fusion seem to cause more dif-
ficulties too. For example, with implication, if A → B 6∈ Σ where 〈Σ,∆〉 is
quantifier-suited, we need to construct two pairs, one at which A holds (that is
simple: show that 〈{A}, {C : C → B ∈ Σ}〉 is quantifier-suited and then extend
that to a full quantifier suited pair 〈Γ, Π〉) and another at which B fails. This one
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is more difficult — we wish to show that 〈ΣΓ, {B}〉 is quantifier-suited, where
ΣΓ = {C ◦D : C ∈ Σ,D ∈ Γ }. How do you do this?

 There is no doubt that there are choices to be made in the se-
mantics of identity. If the extension of the identity predicate is reflexive at
all points, then we have A ` a = a for any proposition A. This will be
anathema to relevant logicians. To give purchase to a relevant account of
identity, we must have points at which identity fails to be reflexive. The va-
lidity of a = b ` b = a ensures that identity is symmetric at all points. If
a = b ∧ b = c ` a = c, then identity must be transitive at all points.
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