
Basic Relevant Theories for Combinators
at Levels I and II

K P
D  M,

I I  T K
kapal@iitk.ac.in

R K. M
A R G, RSISE,
A N U

Bob.Meyer@anu.edu.au

Received by Martin Bunder
Published July 8, 2005

http://www.philosophy.unimelb.edu.au/ajl/2005

c© 2005 Koushik Pal and Robert K. Meyer

Abstract: The system B+ is the minimal positive relevant logic. B+ is
trivially extended to B+T on adding a greatest truth (Church constant) T.
If we leave ∨ out of the formation apparatus, we get the fragment B∧T.
It is known that the set of  B∧T theories provides a good model for
the combinators CL at Level-I, which is the theory level. Restoring ∨ to
get back B+T was not previously fruitful at Level-I, because the set of all
B+T theories is  a model of CL. It was to be expected from semantic
completeness arguments for relevant logics that basic combinator laws
would hold when restricted to  B+T theories. Overcoming some
previous difficulties, we show that this is the case, at Level I. But this does
not form a model for CL. This paper also looks for corresponding results
at Level-II, where we deal with sets of theories that we call propositions.
We adapt work by Ghilezan to note that at Level-II also there is a model
of CL in B∧T propositions. However, the corresponding result for B+T
propositions extends smoothly to Level-II only in part. Specifically, only
some of the basic combinator laws are proved here. We accordingly leave
some work for the reader.

1 
This paper is an essay at an intersection of Philosophy, Computer Science and
Mathematics. That intersection, for present purposes, we take to be Logic—
and in particular relevant and other substructural logics. It is also an essay in
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Levels—in what happens when we climb a set-theoretic level or two in order
to enrich a supply of formal objects with extra ones. It is thus, for example,
that the collection of real numbers was placed on a “sound” basis by 19th and
early 20th century researchers.

 1. R  - Consider the problem of locating π among the
set Q of rational numbers. In Q, we find 3, 3.1, 3.14 and so forth, but none of
these successive “finite approximations” is equal to the infinitely long “decimal
expansion of π”. Idea: Let’s extend our usual arithmetic on Q to define also
arithmetic operations on (properly chosen) subsets of Q. Such a subset of Q

will be an ideal (number). And among those ideals will be π, with its usual
arithmetical properties.
Here’s the basic idea: We enrich a Level-0 collection C of formal objects—

in this case Q—by passing to a Level-I collection of (appropriately chosen)
subsets of C. Some of these subsets (the principal ideals, in the Q case) may be
taken as the representatives at Level-I of the original Level-0 entities. As for
the new entities arising at Level-I (in the sample case, the non-principal ideals
corresponding to Dedekind cuts, which are the other real numbers), the magic
of set-theoretic ascent gives them the right properties to be the rest of R.

 2.   - There is no good reason to stop at Level-I,
either. Consider now the case of Boolean algebras, under Stone representation.
Everybody knows that Boolean algebra is in some appropriate sense the algebra
of sets. But what that sense is became crystal clear only with the work of
Stone [11]. We take (with some redundancy) a Boolean algebra to be a structure
B = 〈B,¬,∧,∨,>,⊥〉, where B is a set closed under complement (¬), meet
(∧) and join (∨), and > and ⊥ are respectively the top and the bottom of the
algebra under the induced ordering. An ultrafilter U in B will be any subset of
B satisfying, for all a, b in B,

[T∧] a ∧ b ∈ U iff a ∈ U and b ∈ U

[T¬] ¬a ∈ U iff a 6∈ U.

Note that, from the (Level-0) viewpoint of an element b of B, an ultrafilter
is at Level-I. But Stone’s Representation Theorem, in representing B, takes us
already to Level-II, on the following recipe:

• UB =df {U : U is an ultrafilter in B}

• PUB =df {W : W ⊆ UB}, the power set of UB

• PUB = 〈PUB,¬,∩,∪, ∅, UB〉 is a Boolean set algebra

where, for any sets α , β of ultrafilters in B, α ∧ β and α ∨ β are respectively
the intersection and union, and ¬α the complement relative to UB, of the
sets. As for ⊥ and >, they are respectively the null set and the universal set of
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ultrafilters in B. The utility of the ascent to PUB is that there is an isomorphic
copy of B itself two levels up. For let an embedding h : B → PUB be defined, by
assigning to every element b the set of ultrafilters in B to which it belongs. i.e.,
for b ∈ B, fix

[Dh] h(b) = {U : b ∈ U and U ∈ UB}

Thus every Boolean algebra B finds a home away from home in a PUB.

 3.   Structures may be enriched and completed, as
we have just recalled, by raising Levels. We now turn to relevant logics. They
have come, semantically, a long way. Beginning in [10] from the Orlov-Moh-
Church-Anderson-Belnap system R of relevant implication, Routley, Meyer
and others produced a series of articles on the Semantics of Entailment, based
on Kripke-style ternary relational postulates. In [9] such postulates were found,
in the 〈→,∧,∨〉 vocabulary, for the Anderson-Belnap systems R+ of positive
relevant implication, E+ of positive entailment, and T+ of positive ticket en-
tailment. Among these positive relevant logics there was a new and natural
minimal one, which we called B+.
We concentrate, in this paper, on B+, and on the fragments, alternative for-

mulations and conservative extensions that make up what we may call the B+
family of minimal logics. We will be concerned, in our work with the B+ family,
with collections of formal objects at Levels I and II. At Level-I our focus is on
theories—intuitively, sets of sentences that are logically closed. We concentrate
at Level-II on what we call propositions1—special collections of theories.

 4.    λ- Our next topic will be
the Combinatory Logic CL of Curry and Feys [3]. There is a delightful coinci-
dence between axiom candidates for various relevant logics and the combina-
tors of which, on the analysis of Curry, these candidate axioms were (in Curry-
speak) the “functional characters” (nowadays “types”). In fact the coincidence
not only reflected Curry but improved him; some combinators untypeable by
Curry correspond anyway to famous theorems of logic, which have been em-
braced (and repudiated) with vigor.
Twenty years ago, this coincidence was independently rediscovered and

deepened by researchers in λ-calculus; specifically, byDezani and her colleagues
in [1] and elsewhere. They added intersection types to Curry’s arrow types.
(Add with [5] type intersection for logical ∧ to Curry’s original function type
for logical →, and behold the improvement.) As relevant semantical analysis
predicted, further combinators (sample: W∗, equivalentlyWI, SII, or λx.xx) have

1Why do we choose proposition, a philosopher’s term for something like the meaning of a
sentence? We have in mind the so-called  view, on which a proposition is explicated as the
set of possible worlds in which a sentence is true. Reduced to its (Level-II) syntactical residue,
this is the set of special theories—namely, the classically consistent and complete ones—to
which the sentence belongs. We generalize!
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non-trivial types in the enriched setup. And the structure of these types is that
conferred by the analysis of conjunction ∧ and implication → in the minimal
relevant logic B+ of [9].
So exciting are the connections between CL and relevant logics that we have

dubbed them The Key to the Universe. There is already good evidence that
the key fits because there are the semantical completeness proofs themselves.
Here, we shall insert that key a little further into its lock. We look again at
how to account for disjunction ∨ in modeling CL. For ∨ (with its usual truth-
functional semantics) has been an ingredient in B+ and other relevant logics
from the beginning. Dezani, Meyer and Motohama did offer a B+T model of
λ and CL in [5], appealing to (so-called) Harrop theories. A principal result
here is a better fit with the semantical and logical intuitions of [9]. We look
to prime B+T-theories in general, and not just the Harrop subclass thereof, as
the appropriate vehicle with which to make the laws governing primitive CL
combinators true. But Dezani and her colleagues, for their part, are not to
be denied. For it was (what we call) the Better Bubbling Lemma (henceforth,
) of Dezani et al. in [6] that led to our new verification of the primitive
combinatory equations in prime B+T theories.
In this paper, we follow [8] to move from Level-I to Level-II to find sys-

tems which model λ and hence CL. Levels arise out of the way one looks at
systems. We discuss, as anticipated above, three levels. (You can have more, if
you like.) Level-0 is that of the elements of a given logical algebra—typically,
an Algebra of Formulas, where each element is aWell-Formed-Formula ().2
For present purposes, at Level-I each element is a theory, which is a collection
of s with some nice properties like closure under conjunction and entail-
ment. (For technical reasons involving the relevantly irrelevant combinator K
and other cancellators, we follow [5] by requiring the theories of this paper to be
non-empty.) At Level-II we have propositions, which are collections of theo-
ries with further nice properties. (We trust that theories and propositions will
become more clear as we go along.)
We recall the definition of B∧T as a relational system from [5]. B∧T is little

more than a fragment of B+. In presenting B∧T, we had a choice between an
assertional and a relational formulation.3 This is a distinction without much of
a difference, since to assert A → B as a theorem of logic comes sensibly to the
same thing (when all the “i”s are dotted and “t”s are crossed) as to claim that A

logically entails B.4

2We allow some ambiguity in specifying Level-0 objects. This leaves open the possibility, as
in the Boolean algebra example above, that distinct s have been identified via an appropriate
quotient construction. Think in this case of Level-0 objects as congruence classes of s.

3We are even-handed here, formulating the richer B+T below as an assertional system.
4More specifically, we may borrow from Curry [4]. The s (Curry’s s) of a propositional

logic are the Level-0 objects built up from atoms (propositional variables and constants) via the
primitive operations (→ and the like). The elementary statements are then formed by attaching
predicators to s. To formulate a system assertionally is to choose a 1-place predicator (say
`) and to insist that the elementary statements (and hence the theorems) are things of the form
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B∧T is the 〈→,∧〉 fragment of B+, enriched with a greatest truth, given by
Church constant T. Upper-case ‘A’, ‘B’, etc. are used to denote syntactical vari-
ables. 6 is a binary predicate in the language, which is read as ‘entails’. With
these we state the formal definition of the B∧T system. The axioms for the
B∧T system are as follows:

Reflex. A 6 A

Top. A 6 T
Top→. T 6 (T→ T)
Idem∧. A 6 (A ∧ A)

∧E. (A ∧ B) 6 A, (A ∧ B) 6 B

→∧I. (A → B) ∧ (A → C) 6 (A → (B ∧ C))

The rules of the system are as follows. (Note that⇒ has been used as a meta-
logical connective in framing rules.)

Trans∧. A 6 B 6 C ⇒ A 6 C

Mon∧. A 6 A ′, B 6 B ′ ⇒ A ∧ B 6 A ′ ∧ B ′

Mon→. A ′ 6 A,B 6 B ′ ⇒ A → B 6 A ′ → B ′

Our first task now is to prove that the results at Level-I extend smoothly to
Level-II for B∧T theories. The idea of moving to Level-II is for some obvious
reasons which will be made clear soon. But first we start with some definitions
and theorems and prove that the results for B∧T theories hold at Level-II also.

D 1 () A  or B∧T- is a non-empty set of
formulas closed under conjunction and B∧T-entailment.

D 2 (A-) AnA- (denoted “A↑”) is a theory contain-
ing the formula A and all the formulas C that are B∧T-entailed by A, i.e.,
A↑ = {C : A 6 C}.

T 1 The intersection of two theories is a theory.
P Let T1 and T2 be two theories. So, T1 6= ∅ 6= T2. (i) SupposeA ∈ T1∩T2

and A 6 B. It follows that A ∈ T1 and A 6 B, so B ∈ T1 (since T1 is a theory).
Similarly, B ∈ T2. Hence, B ∈ T1 ∩ T2. (ii) Suppose A,B ∈ T1 ∩ T2. So, A,B ∈ T1

and thus A ∧ B ∈ T1 (since T1 is a theory), and similarly, A ∧ B ∈ T2. Hence,
A ∧ B ∈ T1 ∩ T2. (iii) T ∈ T1 and T ∈ T2, so, T ∈ T1 ∩ T2. So, T1 ∩ T2 6= ∅. Hence,
T1 ∩ T2 is a theory. ]

` A. To formulate a system relationally is to choose a 2-place predicator (say 6) and to insist
that the elementary statements (and hence the theorems) are things of the form A 6 B.
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D 3 () A B∧T- P is a non-empty set of
theories closed under sub-theory relation and intersection. That is (i) if T1 and
T2 are two theories, T1 ⊆ T2 and T1 ∈ P, then T2 ∈ P, and (ii) if T1 ∈ P and
T2 ∈ P, then T1 ∩ T2 ∈ P.

D 4 (A-) AnA- (written “A”, and also
called the principal proposition for the formulaA) is the proposition consisting
of A↑ and all of its its super-theories (it is of course closed under intersection).

In what immediately follows, we will call a B∧T theory simply a theory; B∧T
proposition, a proposition; and B∧T entailment, entailment. We will also use
T1, T2, etc. to denote theories, P, Q, etc. to denote propositions, A, B, etc. to
denote principal propositions for formulas A,B, etc., and A, B, etc. to denote
well formed formulas. Notice that by the axioms of B∧T, T and T → T belong
to every theory of B∧T. The propositions, on the other hand, are by definition
non-empty. We take our next definition from [8].

D 5 ( ) A set Θ is said to be  if (i) if α ∈ Θ and
α ⊆ β then β ∈ Θ, and (ii) If

⋃
i∈I αi ∈ Θ then ∃i0 ∈ I such that αi0

∈ Θ.

T 2 AnA-Theory is the minimum theory containingA.
P Suppose T1 is a theory containing A. Since T1 is a theory, it is closed
under conjunction and entailment relation. Therefore, for all formulas Bwhere
A 6 B, B ∈ T1. Hence, A↑ ⊆ T1. ]

T 3 AnA-proposition is the minimum proposition containingA↑.
P Suppose P is a proposition containing A↑. Since P is a proposition, it
is closed under sub-theory relation and intersection. Therefore, all theories of
which A↑ is a sub-theory, i.e., all super-theories of A↑ belong to P and hence
also their intersections. Hence, A ⊆ P. ]

T 4 Any principal proposition is open.
P (i) Let T1 ∈ A and T1 ⊆ T2. So T2 ∈ A (since A is closed under sub-
theory relation). (ii) Suppose that

⋃
i∈I αi ∈ A (each αi is a theory). It follows

that A↑ ⊆
⋃

i∈I αi, and hence A ∈
⋃

i∈I αi, and it follows that there is some
i0 ∈ I where A ∈ αi0

. So, ∃i0 ∈ I such that A↑ ⊆ αi0
(since αi0

is a theory),
and it follows that ∃i0 ∈ I such that αi0

∈ A. Hence, any principal proposition
is open. ]

T 5 Any theory T1 =
⋃

{B↑ : B ∈ T1}.
P Let B ∈ T1. We have B ∈ B↑, so B ∈

⋃
{B↑ : B ∈ T1}. Conversely,

suppose C ∈
⋃

{B↑ : B ∈ T1}. So, there is some B ∈ T1 such that C ∈ B↑. Since
T1 is a theory and B ∈ T1, it follows that B↑ ⊆ T1 (by Theorem 2). So, C ∈ T1,
and hence, T1 =

⋃
{B↑ : B ∈ T1}. ]
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T 6 For principal propositionA,A =
⋃

{B : B↑ ∈ A}.
P Consider B such that B↑ ∈ A. Since B is the smallest proposition
containing B↑, B and so

⋃
{B : B↑ ∈ A} is a subset ofA. Conversely suppose T1 ∈

A. Clearly, T1 6= ∅. Now T1 =
⋃

{C↑ : C ∈ T1} and so
⋃

{C↑ : C ∈ T1} ∈ A. But A

is open and C↑ is a theory for each C. Hence there is a C ∈ T1 such that C↑ ∈ A.
Also, C↑ ⊆ T1 (by Theorem 2). Therefore T1 ∈ C, and so, T1 ∈

⋃
{C : C↑ ∈ A}.

Therefore, A ⊆
⋃

{B : B↑ ∈ A}, and hence, A =
⋃

{B : B↑ ∈ A}. ]

T 7 The intersection of two propositions is always non-empty.
P Suppose P and Q are two propositions. By definition, P 6= ∅ 6= Q. So,
there are T1, T2 such that T1 ∈ P and T2 ∈ Q. Now, T1 =

⋃
{C↑ : C ∈ T1}, and

T2 =
⋃

{D↑ : D ∈ T2}. Define T3 = {E : ∃C ∈ T1 and ∃D ∈ T2 where C ∧ D 6 E}.
Clearly, T1 ⊆ T3 and T2 ⊆ T3. Therefore, T3 ∈ P and T3 ∈ Q, i.e., T3 ∈ P ∩ Q.
We have shown that P ∩Q is non-empty. ]

T 8 The intersection of two propositions is always a proposition.
P Let P and Q be two propositions. By Theorem 6, P ∩ Q 6= ∅. (i)
Suppose T1 ∈ P ∩ Q and T1 ⊆ T2. Then T1 ∈ P and T1 ⊆ T2 and P is a
proposition. Therefore, T2 ∈ P. Similarly T2 ∈ Q. And hence T2 ∈ P ∩Q. (ii)
Suppose that T1 and T2 ∈ P∩Q. Then T1 and T2 ∈ P and so T1∩T2 ∈ P. Similarly,
T1 ∩ T2 ∈ Q. And hence T1 ∩ T2 ∈ P ∩Q. Therefore, P ∩Q is closed under the
sub-theory relation and under intersection, and is non-empty. It follows that it
is a propositon. ]

T 9 The intersection of two principal propositions is a principal proposition.
P Suppose that A and B are two principal propositions. Now, A = {T1 :

A↑ ⊆ T1} and B = {T2 : B↑ ⊆ T2}. We have already proved that A ∩ B is a
proposition. So now we need to show that it is a principal proposition. Claim:
A ∩ B = A ∧ B. Let T1 ∈ A ∩ B This holds if and only if A↑ ⊆ T1 and B↑ ⊆ T1

which, in turn, holds if and only if A ∈ T1 and B ∈ T1, if and only if A ∧ B ∈ T1

(since, T1 is a theory). This is equivalent to (A ∧ B)↑ ⊆ T1 (by Theorem 5),
and hence T1 ∈ (A ∧ B). The intersection of two principal propositions is a
principal proposition. ]

2 B∧T       -
The idea of a model for combinators at a Level is that the elements on which
the combinators operate are elements of that particular Level. The defining
equation for any combinator also depends on the Level at which we work. For
example, at Level-I, we assign a theory to each combinator or other combina-
torial term. But at Level-II, we assign propositions to combinators. And then
we show that, where t = u is a provable equation of CL, both t and u must
be assigned the same object. The larger part of this task is to show that the
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defining equations for particular combinators turn out true.5 But it is meet
also to show that we have so fashioned our semantic apparatus that the rules
of inference6 of CL are truth-preserving.
We will look at defining equations for three combinators in particular here,

namely, I, K and W∗. For these combinators, we will prove that the defining
equations turn out true in B∧T-theories. Proofs for the other combinators are
similar and hence are omitted here. Let’s start with the definition of the fusion
operator at different Levels and a basic lemma.

D 6 (   -0) We can introduce the fusion
operator ‘◦’ at Level-0 by just including it in our vocabulary as one more senten-
tial connective, together with a “residuation” rule. While [9] shows that this
produces conservative extensions of standard relevant logics (including those
of this paper), we resist that course here.

D 7 (  - (◦1)) Let T1 and T2 be two theories. Then
T1 ◦1 T2 is defined as

T1 ◦1 T2 = {B : ∃A where A → B ∈ T1 and A ∈ T2}

D 8 (  - (◦2)) Let P and Q be two propositions.
Then P ◦2 Q is defined as

P ◦2 Q = {T1 : ∃T2 ∈ P and ∃T3 ∈ Q where T2 ◦1 T3 ⊆ T1}

L 10 The fusion of two theories is also a theory.
P Let T1 and T2 be two theories. (i) T → T ∈ T1 and T ∈ T2. Therefore,
T ∈ T1 ◦1 T2 and hence, T1 ◦1 T2 is non-empty. (ii) Suppose A ∈ T1 ◦1 T2

and A 6 B. So ∃C such that C → A ∈ T1 and C ∈ T2. But C 6 C and
A 6 B ⇒ C → A 6 C → B. Hence, C → B ∈ T1 (as T1 is a theory). Therefore,
B ∈ T1 ◦1 T2. (iii) Suppose A,B ∈ T1 ◦1 T2. Therefore (∃C where C → A ∈
T1 and C ∈ T2) and (∃D where D → B ∈ T1 & D ∈ T2). Now, C ∧ D 6 C and
A 6 A ⇒ C → A 6 C ∧ D → A. Therefore, C ∧ D → A ∈ T1. (since T1 is
a theory) Similarly, C ∧ D → B ∈ T1. Therefore, C ∧ D → A ∧ B ∈ T1. But,
C ∧ D ∈ T2 (since T2 is closed under conjunction). Hence, A ∧ B ∈ T1 ◦1 T2.
Thus, T1 ◦1 T2 is non-empty and also closed under conjunction and entailment.
Hence it is a theory. ]

C 11 The fusion of a finite number of theories is also a theory.
P Use induction and Lemma 10. ]

5These are axioms like Ix = x,Wxy = xyy, etc.
6For example, as found in [3].
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Now we will prove that B∧T-theories model the three combinators mentioned
above. Here are defining equations for some combinators.

Ix = x

Kxy = x

Cxyz = xzy

C∗xy = yx

Bxyz = x(yz)

B ′xyz = y(xz)

Sxyz = xz(yz)

Wxy = xyy

W∗x = xx

We assign a particular theory to each combinator. To indicate the assignment
succinctly, we enclose a formula scheme in brackets. The associated theory T is
then the smallest set of formulas that contains all conjunctions of one or more
instances of the scheme and which is closed under the entailment relation 6.
Here are the definitions.

I = [A → A]

= {C : for some finite setM and formulas Am,∧
m∈M(Am → Am) 6 C}

K = [A → (B → A)]

C = [(A → (B → C)) → (B → (A → C))]

C∗ = [A → ((A → B) → B)]

B = [(A → B) → ((C → A) → (C → B))]

B ′ = [(A → B) → ((B → C) → (A → C))]

S = [(A → (B → C)) → ((A → B) → (A → C))]

W = [(A → (A → B)) → (A → B)]

W∗ = [((A → B) ∧ A) → B]

The definitions for the theories assigned to each of the combinators are similar
to that for I. For example, a formula D belongs to the set K iff there is some
conjunction C of formulas of the form A → (B → A) such that C 6 D. Here
we show that the set I is indeed a theory. Proofs for other combinators are
similar.

C 12 [A → A] is a theory.
P (i) [A → A] contains all instances of the formulas of the kind A →
A. So it is surely non-empty. (ii) Suppose C,D ∈ [A → A]. Then ∃M,N

where
∧

m∈M(Am → Am) 6 C and
∧

n∈N(An → An) 6 D. Thus we have∧
i∈M∪N(Ai → Ai) 6 C ∧ D and hence C ∧ D ∈ [A → A]. (iii) Suppose

C ∈ [A → A] and C 6 D. Then ∃M where
∧

m∈M(Am → Am) 6 C 6 D. Thus
D ∈ [A → A]. Thus [A → A] is non-empty and closed under conjunction and
entailment. Hence, it is a theory. ]
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We come now to the famous Bubbling Lemma (), which was a principal
weapon invoked in [1] to show that filters on intersection types provide a model
of λ. It will play the same role here for us, changing only the vocabulary to say
that B∧T-theories provide a model for combinators.

L 13 ( ) Assume it is not the case thatD ≡ T. Assume more-
over that

∧
i∈I(Ai → Bi) 6 C → D for some finite non-empty index set I. Then there

is a finite non-empty subset J of I such that

C 6
∧
j∈J

Aj and
∧
j∈J

Bj 6 D.

P Proof given in [1]. (Note that ≡ is defined by setting A ≡ B =df A 6
B and B 6 A.) ]

C 14 I ◦1 T1 = T1

P Let A ∈ I◦1 T1. Then ∃B where B → A ∈ I and B ∈ T1. But B → A ∈ I

means that there is a finite M where
∧

k∈M(Ak → Ak) 6 B → A. Therefore,
by the Bubbling Lemma, B 6

∧
j∈J Aj and

∧
j∈J Aj 6 A for some J ⊆ M. Since

B ∈ T1 and T1 is a theory, it follows that
∧

j∈J Aj ∈ T1. And hence, A ∈ T1 (for
similar reasons.). So, I ◦1 T1 ⊆ T1.
Conversely, suppose A ∈ T1. Since A → A ∈ I (by definition), it follows

that A ∈ I ◦1 T1. So, T1 ⊆ I ◦1 T1. Hence, I ◦1 T1 = T1. ]

C 15 K ◦1 T1 ◦1 T2 = T1

P Suppose A ∈ K ◦1 T1 ◦1 T2. Then ∃B,C such that B → (C → A) ∈
K,B ∈ T1 and C ∈ T2. But B → (C → A) ∈ K, so ∃ finite I such that

∧
i∈I(Di →

(Ei → Di)) 6 (B → (C → A)). By the Bubbling Lemma, ∃J ⊆ I such that B 6∧
j∈J Dj and

∧
j∈J(Ej → Dj) 6 C → A Again by Bubbling Lemma, ∃M ⊆

J such that C 6
∧

k∈M Ek and
∧

k∈M Dk 6 A. Now, B ∈ T1 and T1 is a the-
ory ⇒

∧
j∈J Dj ∈ T1. Therefore, ∀j ∈ J, Dj ∈ T1. ⇒ ∀k ∈ M, Dk ∈ T1

(as M ⊆ J). Hence,
∧

k∈M Dk ∈ T1 (since T1 is a theory). And so, A ∈ T1.
Therefore, K ◦1 T1 ◦1 T2 ⊆ T1. Conversely, suppose A ∈ T1. Since T2 is not
empty, ∃B such that B ∈ T2. By definition, (A → (B → A)) ∈ K. Therefore,
B → A ∈ K ◦1 T1. And hence, A ∈ K ◦1 T1 ◦1 T2. Therefore, T1 ⊆ K ◦1 T1 ◦1 T2

and so, K ◦1 T1 ◦1 T2 = T1. ]

C 16 W∗ ◦1 T1 = T1 ◦1 T1.
P Suppose A ∈ W∗ ◦1 T1. Then ∃B such that B → A ∈ W∗ and B ∈ T1.
But B → A ∈ W∗ means that ∃ finite I such that

∧
i∈I(((Di → Ei) ∧ Di) →

Ei) 6 B → A. By the Bubbling Lemma, ∃J ⊆ I such that B 6
∧

j∈J((Dj →
Ej)

∧
Dj) and

∧
j∈J Ej 6 A Now, ∀j ∈ J,

∧
j∈J((Dj → Ej) ∧ Dj) 6 ((Dj →

Ej) ∧ Dj). Therefore, ∀j ∈ J, (Dj → Ej) ∧ Dj ∈ T1. So, ∀j ∈ J,Dj → Ej ∈ T1

and Dj ∈ T1. And so, ∀j ∈ J, Ej ∈ T1 ◦1 T1. Therefore,
∧

j∈J Ej ∈ T1. And hence,
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A ∈ T1. Therefore,W∗◦1T1 ⊆ T1◦1T1. Conversely, supposeA ∈ T1 ◦1T1. Then
∃B such that B → A ∈ T1 and B ∈ T1. Also ((B → A) ∧ B) → A ∈ W∗. But,
(B → A) ∧ B ∈ T1 (since T1 is closed under conjunction). Therefore, A ∈ W∗

◦1T1. So, T1 ◦1 T1 ⊆ W∗ ◦1 T1. Hence,W∗ ◦1 T1 = T1 ◦1 T1. ]

We have left it to you, dear reader, to verify the defining axioms for the other
combinators. But, to be sure that we have a model of CL in Level-I theories,
we must show also that truth of the theorems of this system is preserved under
the rules. These are succinctly stated in [2, p. 231f].

(µ) X = Y ⇒ UX = UY

(ν) X = Y ⇒ XU = YU

(σ) X = Y ⇒ Y = X

(τ) X = Y and Y = Z ⇒ X = Z

We note simply that, since fusion at Level-I is a single-valued operation on
B∧T-theories and since equality is set equality, all of the rules preserve truth,
ending the demonstration that there is a model of CL in B∧T-theories, on any
assignment of such theories to free variables.

3 B∧T       -
Having proved that B∧T-theories provide a good model for the combinators at
Level-I, we will now prove the same results at Level-II, i. e., B∧T-propositions
also provide a good model for the combinators. Let’s start with the definitions
of the combinators at Level-II. (i) ι = {T1 : I ⊆ T1}. (ii) κ = {T1 : K ⊆ T1}.
(iii) ω = {T1 : W∗ ⊆ T1}. Here ι, κ and ω are the Level-II correspondance of
I, K and W∗ respectively. The definitions of the other combinators follow on
similar lines. The idea behind using Greek notations for the combinators at
Level-II is just to remove ambiguity with those at Level-I.

L 17 Suppose T1, T2, T3 and T4 are four theories such that T1 ⊆ T2 and T3 ⊆ T4.
Then T1 ◦1 T3 ⊆ T2 ◦1 T4.
P Suppose A ∈ T1 ◦1 T3. Then there is some B such that B → A ∈ T1

and B ∈ T3. Therefore, B → A ∈ T2 and B ∈ T4 (since T1 ⊆ T2 and T3 ⊆ T4).
Therefore, A ∈ T2 ◦1 T4. Hence, T1 ◦1 T3 ⊆ T2 ◦1 T4. ]

L 18 Suppose P,Q, R and S are four propositions such that P ⊆ R and Q ⊆ S.
Then P ◦2 Q ⊆ R ◦2S.
P Suppose T1 ∈ P ◦2 Q. ⇒ ∃ T2 ∈ P and T3 ∈ Q such that T2 ◦1 T3 ⊆ T1.
But then, T2 ∈ R and T3 ∈ S (since P ⊆ R and Q ⊆ S). Therefore, T1 ∈ R ◦2 S.
Hence, P◦2 Q ⊆ R ◦2 S. ]
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L 19 The fusion of two propositions is also a proposition.
P Let P,Q be two propositions. (i) Since P 6= ∅ 6= Q, it follows that ∃T1

and T2 such that T1 ∈ P and T2 ∈ Q. Now, T1 ◦1 T2 is a theory (by Lemma 10).
And by definition, T1 ◦1 T2 ∈ P ◦2 Q. Hence, P ◦2 Q is non-empty. (ii) Suppose
T1 ∈ P ◦2 Q and T1 ⊆ T2 and T2 is a theory. So, ∃T3 ∈ P and T4 ∈ Q where
T3 ◦1 T4 ⊆ T1. Therefore T3 ◦1 T4 ⊆ T2 (since T1 ⊆ T2). Therefore, T2 ∈ P

◦2Q. (iii) Suppose T1, T2 ∈ P ◦2 Q. It follows that (∃ T3 ∈ P and T4 ∈ Q where
(T3 ◦1 T4 ⊆ T1)) and (∃ T5 ∈ P and T6 ∈ Q where (T5◦1 T6 ⊆ T2)). Hence,
(T3 ∩ T5) ∈ P and (T4 ∩ T6) ∈ Q. Also, (T3 ∩ T5) ◦1 (T4 ∩ T6) ⊆ (T3 ◦1 T4) ⊆
T1) and (T3 ∩ T5) ◦1 (T4 ∩ T6) ⊆ (T5 ◦1 T6) ⊆ T2) (by Lemma 17). Therefore,
(T3 ∩ T5) ◦1 (T4 ∩ T6) ⊆ T1 ∩ T2. Hence, T1 ∩ T2 ∈ P ◦2 Q. Thus, P ◦2 Q is
non-empty and closed under intersection and sub-theory relation. And hence
is a proposition. ]

T 20 The fusion of finite number of propositions is a proposition.
P By induction on the previous result. ]

C 21 ι ◦2 P = P.
P Suppose T1 ∈ ι ◦2 P. It follows that there is some T2 ∈ ι and T3 ∈ P

such that T2 ◦1 T3 ⊆ T1. But T2 ∈ ι ⇒ I ⊆ T2 (by definition). Therefore, I◦1

T3 ⊆ T2 ◦1 T3 (by Lemma 17). Hence, I ◦1 T3 ⊆ T1. But, I ◦1 T3 = T3 (by Claim
14). ⇒ T3 ⊆ T1 and hence, T1 ∈ P. Therefore, ι ◦2 P ⊆ P. Conversely, suppose
T1 ∈ P. It follows that I ◦1 T1 (= T1) ⊆ T1. Hence, T1 ∈ ι ◦2 P. Therefore,
P ⊆ ι ◦2 P. And so, ι ◦2 P = P. ]

C 22 κ ◦2 P ◦2Q = P.
P Suppose T1 ∈ κ ◦2 P ◦2 Q. So, there is some T2 ∈ κ, and a T3 ∈ P and
T4 ∈ Q such that T2 ◦1 T3 ◦1 T4 ⊆ T1. But T2 ∈ κ ⇒ K ⊆ T2. Therefore, K◦1 T3◦1

T4 ⊆ T2 ◦1 T3 ◦1 T4 ⊆ T1. But K ◦1 T3 ◦1 T4 = T3 (by Claim 15). ⇒ T3 ⊆ T1 and
hence T1 ∈ P. Therefore, κ ◦2 P ◦2 Q ⊆ P. Conversely, suppose T1 ∈ P. Since
Q is not empty by definition, there is a T2 ∈ Q. K of course belongs to κ. Also,
K ◦1 T1 ◦1 T2 (= T1) ⊆ T1. Hence, T1 ∈ κ ◦2 P ◦2 Q. and thus P ⊆ κ ◦2 P ◦2 Q.
Therefore, κ ◦2 P ◦2 Q = P. ]

C 23 ω ◦2 P = P ◦2 P.
P Suppose T1 ∈ ω ◦2 P. It follows that there is some T2 ∈ ω and T3 ∈ P

such that T2 ◦1 T3 ⊆ T1. But T2 ∈ ω ⇒ W∗ ⊆ T2. Therefore, W∗ ◦1 T3 ⊆
T2 ◦1 T3 ⊆ T1. But W∗ ◦1 T3 = T3 ◦1 T3 (by Claim 16). So T3 ◦1 T3 ⊆ T1

and hence T1 ∈ P ◦2 P. Therefore, ω ◦2 P ⊆ P ◦2 P. Conversely, suppose
T1 ∈ P ◦2 P. ⇒ T2 ∈ P and T3 ∈ P such that T2 ◦1 T3 ⊆ T1. But T2 ∈ P and
T3 ∈ P ⇒ T2 ∩ T3 ∈ P. W∗ of course belongs to ω. Also, W∗ ◦1 (T2 ∩ T3) =

(T2 ∩ T3) ◦1 (T2 ∩ T3) ⊆ (T2 ◦1 T3) ⊆ T1. Hence, T1 ∈ ω ◦2 P. So P ◦2 P ⊆ ω ◦2 P.
Therefore, ω ◦2 P = P ◦2 P. ]
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We conclude this section as we did the last, leaving the verification of other
primitive combinator equalities to readers; note that the rules of [2] preserve
equality of propositions at Level-II as they did of theories at Level-I.

4    B∧T   B+T  -
Having shown that B∧T-theories are a model for the combinators at Level-I
and B∧T-propositions are a model for the combinators at Level-II, we now try
to extend the results to B+T-theories and propositions. But we are stuck at the
very beginning because it is shown in [5] that there is no model for λ in the set
of all B+T-theories. For the same reason, there is no model for the combinators
there. But we can model the basic combinator laws in prime B+T theories, as
we proceed to show. Recall that T1 is a prime theory if A ∨ B ∈ T1 ⇒ either
A ∈ T1 or B ∈ T1. Again we will talk of only the three combinators I, K andW∗.
The proofs for other primitive combinators from among C, C∗, B, B ′, S and W
are similar. For the proofs to go through, we will need what we call the Better
Bubbling Lemma (). This is a very important generalization of the Bubbling
Lemma  above.7 For proofs of , see [7] and [6]. We only state it here.

L 24 (  ) For any finite sets {σi → τi}i∈M and
{σ

′
j → τ

′
j}j∈J of arrow types, the following equivalence holds: A ⇔ Fwhere

A =df
∧

i∈M(σi → τi) 6
∨

j∈J(σ
′
j → τ

′
j)

F =df ∃j ∈ J(σ
′
j 6

∨
i∈M σi) and

∀M ′ ( M(σ
′
j 6

∨
i∈M ′ σi) or (

∧
i∈M\M ′ τi 6 τ

′
j)

P Given in [6]. ]

From this point on, we will call a B+T theory simply a theory; a B+T proposition,
a proposition; and B+T entailment, entailment. We will also use T1, T2, etc.
to denote theories, P,Q, etc. to denote propositions, A, B, etc. to denote
principal propositions for formulas A,B, etc., and A,B, etc. to denote well
formed formulas. Let us first look at the set of axioms and rules of B+T. The
axioms are as follows.8

Reflex. A → A

∧E. (A ∧ B) → A, (A ∧ B) → B

→ ∧I. (A → B) ∧ (A → C) → (A → (B ∧ C))

→ ∨E. (A → C) ∧ (B → C) → ((A ∨ B) → C)

∨I. A → (A ∨ B), B → (A ∨ B)

Dist∧∨. A ∧ (B ∨ C) → ((A ∧ B) ∨ (A ∧ C))

7It is our impression, based on conversations with Dezani, that  is mainly due to her and
 to Castagna.

8in contrast to B∧T above, we formulate B+T as an assertional system. But we suppress `.
To restore it in approved Curry [4] fashion, preface each formula asserted as an axiom with `.
Make a similar adjustment in the rules.
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The rules for the system B+T are as follows. Note that ⇒ is again a meta-
logical connective used to express rules.

→E. A → B and A ⇒ B

∧I. A and B ⇒ A ∧ B

RulB. B → C ⇒ (A → B) → (A → C)

RulB ′. A → B ⇒ (B → C) → (A → C)

In what follows, we will show how the prime theories satisfy the combinators.
We will show this for the combinators I, K and W∗. For the others, the proofs
follow on similar lines. Caution: It is necessary to be delicate at this point.
What we are proving here (or leaving for you to prove) is that the defining
equations for particular primitive combinators are true, when their arguments
are assigned prime B+T theories. It is also the case that the primitive combina-
tors will be assigned prime theories. Not only that, but any theory all of whose
members are entailed by conjunctions of arrow statements will also be prime.9
This means that prime theories are rather thick on the ground. Nonetheless,
as we warn again below, neither the fusion nor the intersection of two prime
theories is in general prime. Beware.

C 25 Suppose T1 is a prime theory. Then I ◦1 T1 = T1.
P Suppose A ∈ I◦1 T1. So there is a B where B → A ∈ I and B ∈ T1. Now,
if B → A ∈ I then there is a finite index set K such that

∧
k∈K(Ck → Ck) 6 B →

A. By Lemma 24, B 6
∨

k∈K Ck. But B ∈ T1. Hence,
∨

k∈K Ck ∈ T1. Since T1 is
prime, there is some k0 ∈ K such that Ck0

∈ T1. Define S = {k ∈ K : Ck ∈ T1}.
(S 6= ∅ as k0 ∈ S.) Define K ′ = K \ S. (K ′ ( K as S 6= ∅.) Clearly, B 66

∨
j∈K ′ Cj.

Therefore,
∧

j∈S Cj 6 A. Now, ∀j ∈ S,Cj ∈ T1 (by definition of S). Hence,∧
j∈S Cj ∈ T1 (since T1 is a theory). Therefore, A ∈ T1. And so, I ◦1 T1 ⊆ T1.
Conversely, suppose A ∈ T1. Obviously, A → A ∈ I (by definition). Hence,
A ∈ I ◦1T1. Therefore, T1 ⊆ I◦1 T1. And so, I ◦1 T1 = T1. ]

C 26 Suppose T1 and T2 are prime theories. Then K ◦1 T1◦1 T2 = T1.
P Suppose A ∈ K◦1 T1 ◦1 T2. So there are B, C such that B → (C → A) ∈
K, B ∈ T1 and C ∈ T2. Now if B → (C → A) ∈ K then there is a finite index
set M such that

∧
i∈M(Ei → (Di → Ei)) 6 (B → (C → A)). By Lemma 24,

B 6
∨

i∈M Ei. Since, B ∈ T1 and T1 is a theory, therefore,
∨

i∈M Ei ∈ T1. Since,
T1 is prime, there is a i0 ∈ M such that Ei0

∈ T1. Define S = {i ∈ M : Ei ∈ T1}

(S 6= ∅ as i0 ∈ S). DefineM ′ = M\S (M ′ ( M as S 6= ∅). Clearly, B 66
∨

j∈M ′ Ej.
Therefore,

∧
j∈S(Dj → Ej) 6 (C → A). Again by Lemma 24, C 6

∨
j∈S Dj.

Since, C ∈ T2 and T2 is a theory, therefore,
∨

j∈S Dj ∈ T2. Since, T2 is prime,
there is a j0 ∈ S such that Dj0

∈ T2. Define S ′ = {j ∈ S : Dj ∈ T2} (S ′ 6= ∅
as j0 ∈ S ′.) Define M ′′ = S \ S ′ (M ′′ ⊆ S as S ′ 6= ∅). Clearly, C 66

∨
j∈M ′′ Dj.

Therefore,
∧

k∈S ′ Ek 6 A. Now ∀k ∈ S ′, Ek ∈ T1 (by definition and since
9Dezani showed this in [6].

Koushik Pal and Robert K. Meyer, “Basic Relevant Theories for Combinators at Levels I and II”, Australasian Journal of Logic (3) 2005, 14–32

http://www.philosophy.unimelb.edu.au/ajl/2005
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2005 28

S ′ ( S). Hence,
∧

k∈S ′ Ek ∈ T1 (since T1 is a theory) . Therefore, A ∈ T1. And
so, K ◦1 T1 ◦1 T2 ⊆ T1.
Conversely, suppose A ∈ T1. Since T2 is not empty, there is some B such

that B ∈ T2. By definition, (A → (B → A)) ∈ K. Therefore, B → A ∈ K ◦1 T1.
And hence, A ∈ K ◦1 T1 ◦1 T2. Therefore, T1 ⊆ K ◦1 T1 ◦1 T2. And so, K ◦1 T1◦1

T2 = T1. ]

C 27 Suppose T1 is a prime theory. ThenW∗ ◦1 T1 = T1◦1 T1.
P Suppose A ∈ W∗ ◦1 T1. It follows that there is a B such that B →
A ∈ W∗ and B ∈ T1. Now, B → A ∈ W∗ ⇒ ∃ a finite index set M such that∧

i∈M(((Ci → Di) ∧ Ci) → Di) 6 B → A. By Lemma 24, B 6
∨

i∈M((Ci →
Di) ∧ Ci). Since, B ∈ T1 and T1 is a theory, it follows that,

∨
i∈M((Ci →

Di) ∧ Ci) ∈ T1. Since, T1 is prime, there is some i0 ∈ M such that (Ci0
→

Di0
) ∧ Ci0

∈ T1. Define S = {i ∈ M : (Ci → Di) ∧ Ci ∈ T1} (S 6= ∅ as i0 ∈ S).
DefineM ′ = M\S (M ′ ( M as S 6= ∅). Clearly, B 66

∨
j∈M ′((Cj → Dj)∧Cj).

Therefore,
∧

j∈S Dj 6 A. Now, ∀j ∈ S, (Cj → Dj) ∧ Cj ∈ T1 (by definition of S).
Therefore, ∀j ∈ S, Cj → Dj ∈ T1 and Cj ∈ T1 (since T1 is a theory). It follows
that ∀j ∈ S, Dj ∈ T1 ◦1 T1 (by definition). Hence,

∧
j∈S Dj ∈ T1 ◦1 T1 (since

T1 ◦1 T1 is a theory). Therefore, A ∈ T1 ◦1 T1. And so,W∗ ◦1 T1 ⊆ T1 ◦1 T1.
Conversely, suppose A ∈ T1 ◦1 T1. Then there is a B such that B → A ∈ T1

and B ∈ T1. Also ((B → A) ∧ B) → A ∈ W∗. But, (B → A) ∧ B ∈ T1 (since T1 is
closed under conjunction). Therefore, A ∈ W∗ ◦1 T1. So, T1 ◦1 T1 ⊆ W∗ ◦1 T1.
Hence,W∗ ◦1 T1 = T1 ◦1 T1. ]

5   
In the above section, we have seen that the prime theories of B+T do a really
good job, satisfying all the primitive combinator equalities. So the question
arises: Is the set of prime theories of B+T a model for the combinators? The
answer is “No.” We must face the real problem, because prime theories are
neither closed under fusion nor closed under intersection.10
So what do we do? The most logical thing to do is to expand a non-prime

theory T1 to a prime theory. But this can be done in more than one way. So
10Specifically, consider the following counterexample, adapted from Dezani. Recall that we

interpret W = [(A → (A → B)) → (A → B)], now in the B+T vocabulary. Where p, q, r are
propositional variables, define theories T1 and T2 thus: T1 is the principal theory (p → (p →
r)) ∧ (q → (q → r))↑. Similarly let T2 be the principal theory p ∨ q↑. T1 is prime, though T2

clearly is not prime. Computing, r ∈ W ◦1 T1 ◦1 T2. But r sadly fails to belong to T1 ◦1 T2 ◦1 T2.
This refutes on interpretation in arbitrary B+T theories theW law. Worse, this counterexample
can be massaged so that all theories involved are prime. For, where s is another propositional
variable, we may simply let T2 = T3 ◦1 T4, where T3 is the principal theory s → p ∨ q↑ and T4

is just s↑. The verification that we have left for the reader now fails for W, our appeal to 
being blocked because T2, though now defined as a fusion of prime theories, remains resolutely
non-prime.
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which theory should we choose as our prime extension of T1? A natural solu-
tion is to look at all the prime theories which are super theories of T1. And
that is how propositions originate. But in the B+T case we will try to define
something more precise, namely, prime propositions. We supply these with a
corresponding fusion operator (say, prime fusion) in the hope that the proposi-
tions will then have nice properties. So here we go.

D 9 ( ) A non-empty collection of theories P

is said to be a prime proposition if (i) for each T1 ∈ P, T1 is a prime theory. (ii)
If T1 ∈ P, T1 ⊆ T2 and T2 is a prime theory, then T2 ∈ P.

D 10 (   (◦2
′ )) Suppose P and Q are two

prime propositions. Then their prime fusion is defined as follows

P ◦2
′ Q = {T1 : (∃T2 ∈ P)(∃T3 ∈ Q)(T2 ◦1 T3) ⊆ T1 and T1 is prime.}

T 28 The intersection of two prime propositions is always non-empty.
P Suppose P and Q are two prime propositions. By definition, P 6= ∅ 6=
Q. It follows that there are T1 ∈ P, T2 ∈ Q. Now, T1 =

⋃
{C↑ : C ∈ T1} And,

T2 =
⋃

{D↑ : D ∈ T2}. Define T3 = {E : ∃C ∈ T1 and ∃D ∈ T2 such that C ∧ D 6
E}. Clearly, T1 ⊆ T3 and T2 ⊆ T3. However, T3 need not be prime. But we can
always extend it to some prime theory T4 such that T3 ⊆ T4. Therefore, T4 ∈ P

and T4 ∈ Q, i. e., T4 ∈ P ∩Q. And hence, P ∩Q is non-empty. ]

T 29 The intersection of two prime propositions is always a prime proposi-
tion.
P Let P and Q be two prime propositions. By Theorem 27, P ∩ Q 6= ∅.
(i) Suppose T1 ∈ P ∩ Q. Then T1 ∈ P and hence, T1 is prime. (ii) Suppose
T1 ∈ P ∩ Q and T1 ⊆ T2 and T2 is prime. Then T1 ∈ P, T1 ⊆ T2, T2 is prime
and P is a prime proposition. Therefore, T2 ∈ P. Similarly T2 ∈ Q. And hence
T2 ∈ P ∩Q. Therefore P ∩Q is non-empty, contains only prime theories and is
closed under sub-theory relation. And hence is a prime proposition. ]

T 30 The prime fusion of two prime propositions is a prime proposition.
P Suppose P and Q are two prime propositions. (i) Let T1 ∈ P ◦2

′ Q. By
definition of ◦2

′ , T1 is prime. (ii) Since P 6= ∅ 6= Q, there are T1 ∈ P and T2 ∈ Q.
Now, T1◦1T2 is a theory (by Lemma 10). But it need not be prime. However we
can extend it to a prime theory T3 such that T1 ◦1 T2 ⊆ T3. Then by definition,
T3 ∈ P◦2

′ Q. Hence, P◦2
′ Q is non-empty. (iii) Suppose T1 ∈ P◦2

′ Q and T1 ⊆ T2

and T2 is a prime theory. It follows that there are T3 ∈ P and T4 ∈ Q such that
T3 ◦1 T4 ⊆ T1. So, T3 ◦1 T4 ⊆ T2. (since T1 ⊆ T2) Therefore, T2 ∈ P ◦2

′ Q.
Thus, P ◦2

′ Q is non-empty, contains only prime theories and is closed under
sub-theory relation. And hence is a prime proposition. ]
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T 31 The prime fusion of a finite number of propositions is a prime proposi-
tion.
P By induction on the previous result. ]

Prime propositions and the prime fusion operator satisfy the combinator laws
for K, B, B ′, C and C∗. But they do not work so nicely for the combinators
W, W∗ and S. We will carry out the arguments for I and K. Proofs for B, B ′, C
and C∗ are similar. We will indicate where a similar argument breaks down
for W∗. The same difficulties afflict arguments for W and S. We begin anew
with interpretations of the combinators ι, κ and ω at Level-II of B+T. ι = {T1 :

I ⊆ T1 and T1 is prime}. κ = {T1 : K ⊆ T1 and T1 is prime}. ω = {T1 : W∗ ⊆
T1 and T1 is prime}.
The theories determined by the combinators are known to be prime [6]. In

particular, I, K andW∗ are prime. Therefore, I ∈ ι, K ∈ κ andW∗ ∈ ω.

C 32 Suppose P is a prime proposition. Then ι ◦2
′ P = P.

P Suppose T1 ∈ ι ◦2
′ P. So T1 is prime. It follows that T2 ∈ ι and T3 ∈ P

such that T2 ◦1 T3 ⊆ T1. But T2 ∈ ι ⇒ I ⊆ T2 (by definition). Therefore,
I ◦1 T3 ⊆ T2 ◦1 T3 (by Lemma 17). Hence, I ◦1 T3 ⊆ T1. But, T3 is prime and so
I ◦1 T3 = T3 (by Claim 25). So T3 ⊆ T1 and hence, T1 ∈ P (since T1 is prime).
Therefore, ι ◦2

′ P ⊆ P. Conversely, suppose T1 ∈ P. Therefore T1 is prime,
and I ◦1 T1 (= T1) ⊆ T1. Hence, T1 ∈ ι ◦2

′ P. Therefore, P ⊆ ι ◦2
′ P. And so,

ι ◦2
′ P = P. ]

C 33 Suppose P andQ are prime propositions. Then κ ◦2
′ P ◦2

′ Q = P.
P Suppose T1 ∈ κ◦2

′ P ◦2
′ Q. Therefore T1 is prime. So, there are T2 ∈ κ,

T3 ∈ P and T4 ∈ Q such that T2 ◦1 T3 ◦1 T4 ⊆ T1. But if T2 ∈ κ then K ⊆ T2.
Therefore, K ◦1 T3 ◦1 T4 ⊆ T2 ◦1 T3 ◦1 T4 ⊆ T1. But T3 and T4 are prime. Hence,
K ◦1 T3 ◦1 T4 = T3 (by Claim 26), and T3 ⊆ T1 which gives T1 ∈ P (since T1 is
prime). Therefore, κ ◦2

′ P ◦2
′ Q ⊆ P.

Conversely, suppose T1 ∈ P. Therefore, T1 is prime (as P is a prime proposi-
tion). SinceQ is not empty by definition, there is a T2 ∈ Q. K of course belongs
to κ. Also, K ◦1 T1 ◦1 T2 (= T1) ⊆ T1 and T1 is prime. Hence, T1 ∈ κ ◦2

′ P ◦2
′ Q.

So, P ⊆ κ ◦2
′ P ◦2

′ Q. Therefore, κ ◦2
′ P ◦2

′ Q = P. ]

So we have proved that prime propositions and the prime fusion operator work
fine for the combinators I and K. Proofs for the combinators B, B ′, C and C∗
are similar. Now we show where we get stuck with these definitions for the
combinatorW∗. Similar difficulties afflictW and S. We will make the following
claim and try to prove it. Keep an eye out for Trouble.

C 34 Suppose P is a prime proposition. Thenω ◦2
′ P = P ◦2

′ P.
A P Suppose T1 ∈ ω ◦2

′ P. Hence T1 is prime. There are
T2 ∈ ω and T3 ∈ P such that T2 ◦1 T3 ⊆ T1. But T2 ∈ ω ⇒ W∗ ⊆ T2. Therefore,
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W∗ ◦1 T3 ⊆ T2 ◦1 T3 ⊆ T1. ButW∗ ◦1 T3 = T3 ◦1T3 (by Claim 27). It follows that
T3◦1T3 ⊆ T1 and hence T1 ∈ P◦2

′ P (as T1 is prime). Therefore,ω◦2
′ P ⊆ P◦2

′ P.
This part was trivial. It is the other part where we actually get stuck. Con-

versely, suppose T1 ∈ P ◦2
′ P. So, there are T2 ∈ P and T3 ∈ P such that

T2 ◦1 T3 ⊆ T1. Suppose there is a T4 ∈ P where T4 ⊆ T2 and T4 ⊆ T3 [!!!]. W∗

of course belongs to ω. Also,W∗ ◦1 T4 = (T4 ◦1 T4) ⊆ (T2 ◦1 T3) ⊆ T1. Hence,
T1 ∈ ω ◦2

′ P. It follows that P ◦2
′ P ⊆ ω ◦2

′ P. Therefore, ω ◦2
′ P = P ◦2

′ P. [

Now that the attempted proof is over, look back at the part marked “[!!!]”. This
line causes a problem. It is not always possible to find a prime theory T4 which
is a subset of two given arbitrary prime theories T2 and T3. Consider in this con-
text the boolean algebra on the base set {a, b}. This lattice illustrates our B+T
problems. We have {{a}, {a, b}} and {{b}, {a, b}} as two prime theories. (Prime
filters, as an algebraist would say.) But the only non-empty theory (filter) that
is a subset of both of these is {{a, b}}, which unfortunately is not prime. And
that is exactly where we get stuck in all the three cases ofW, W∗ and S. Perhaps
we can modify the definitions of prime propositions and/or the prime fusion
operator so that the existence of such a T4 is always guaranteed for arbitrary
prime theories T2 and T3 while satisfying also nice properties like closure under
intersection and fusion. If so, we can hope to get a model for the combinators
in B+T-prime propositions. Also note that because of what we have claimed in
this paper, any subset of the prime theories of B+T, which is closed under in-
tersection and fusion, is definitely a model for CL. But finding one such subset
is not an easy goal. We entreat your help.

 We express our indebtedness to Barendregt, Bunder,
Coppo, Dezani, Ghilezan, Hindley, Motohama, Ronchi and Venneri for the
substantial discussions Bob had with them on the topics of this paper. The Key
to the Universe, the semantical underpinning that links relevant and combina-
tory logics, grew out of Bob’s decades’ old collaboration with the late Richard
Sylvan.
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