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Abstract: The Two-Envelope Paradox is classically presented as a problem
in decision theory that turns on the use of probabilities in calculating ex-
pected utilities. I formulate a Maximin Version of the paradox, one that
is decision-theoretic but omits considerations of probability. I investig-
ate the source of the error in this new argument, and apply the insights
thereby gained to the analysis of the classical version.

1 T V   P
The Two-Envelope Paradox is a decision-theoretic problem that is widely taken
to turn on considerations of probability.1 Here is the Classical Version, as
found in many recent contributions to the recent literature:

You were invited to select one of two sealed envelopes. You were informed
that both contain money, one twice as much as the other. This is all that you
know about them: you do not know, for example, anything about the process
by which each envelope came to hold the amount of money that it holds. You
have chosen one envelope—call it ‘Alpha.’ You are now offered two options:
you may keep Alpha, or else swap it for the other envelope, Beta. What is it
in your financial self-interest to do? Surely you have no reason to prefer one
option to the other. But there is an argument, the Classical Argument, for the
view that you should swap:

1Raymond Smullyan, Satan, Cantor and Infinity, Oxford University Press 1992, pp. 189–192,
offers what he calls ‘a version of the paradox’ whose conclusion and supporting arguments do
not concern what the agent should do. Smullyan does not claim to provide materials that could
be used in the construction of a paradox in decision theory, let alone explain how to perform
the construction.
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(-1) Let x be the amount of money in Alpha.

(-2) Then Beta contains either 2x or x/2.

(-3) These two possibilities are equally likely.

(-4) The expected value of keeping Alpha is (0.5×x)+(0.5×x) = x, and the
expected value of swapping to Beta is (0.5× 2x) + (0.5× x/2) = 1.25x.

(-5) Therefore you should swap.

The problem is to locate the error in this argument. That there is an error
somewhere is guaranteed not only by the implausibility of the conclusion, but
also by the fact that similar reasoning for the opposite conclusion can be enter-
tained, with the first step ‘Let y be the amount of money in Beta.’

All discussions of the Classical Argument known to me seek to identify the
error as one bound up with probabilities. I will now set forth a new version
of the paradox, the  Version. It is manifestly decision-theoretic, and
closely related in structure to the Classical Version, except that it omits con-
siderations of probability.
You were invited to select one of two sealed envelopes. You were informed

that both contain money, one twice as much as the other, and this is all that you
know about them. You have chosen one envelope, Alpha. You may now keep
Alpha, or else swap it for the other envelope, Beta. You believe that you are not
in a position to assign probabilities to the various possible outcomes of your
choices—e. g., you cannot safely use the principle of indifference to conclude
that there is a 0.5 probability that Alpha contains twice as much money as the
Beta. Being risk-averse, you decide to employ the maximin rule.
Here are three parallel arguments for three mutually incompatible conclu-

sions about what you should do. First,  x-: Let x be the unseen
amount of money in Alpha. Then the amount of money in Beta is either 2x or
x/2. We draw up a payoff table as follows:

Beta has 2x Beta has x/2

 2x x/2

 x x

The action with the best worst possible outcome is , so you should per-
form this action.
Second,  y-: Let y be the unseen amount of money in Beta.

Then Alpha contains either 2y or y/2.

Alpha has 2y Alpha has y/2

 y y

 2y y/2
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The action with the best worst possible outcome is , so you should per-
form this action.
Third,  z-. Let z be the total amount of money that has

been distributed between the envelopes, so that one of the envelopes contains
2z/3 and the other contains z/3.

Alpha has 2z/3 Alpha has z/3

 z/3 2z/3

 2z/3 z/3

The worst possible outcome of  is identical with the worst possible out-
come of , so you should be indifferent between the actions.
If we describe the Classical and Maximin Versions as two versions of the

Two-Envelope Paradox, rather than two different paradoxes, we suggest more
than that they have some structural similarities: we suggest that each has at
least one resolution that overlaps in vital and especially instructive ways with
at least one resolution of the other. This is indeed the conjecture that I want
to test in what follows. If it is correct, then there is some error in the Classical
Argument other than probabilistic ones.2
In Section 2 of this paper I investigate the Maximin Version, seeking to

explain both why the x-argument and the y-argument are fallacious, and why
the z-argument reaches what is intuitively the correct conclusion. In Section 4
I use some insights of Section 2 to resolve the Classical Version. Sections 3 and
5 concern side-issues.

2 A    M V 
Consider the first payoff table, presented above in connection with the x-
argument. The table is supposed to be listing, for each of the two relevant
actions, all the epistemically possible financial outcomes—that is, all the phys-
ically possible payoffs compatible with the evidence that that there are two
sealed envelopes, one containing twice as much money as the other, and that
you initially chose one but now have the option of swapping it for the other.
The payoff table does not in fact do this.
To establish this, let us ponder how we are to interpret the symbol ‘x’ that

appears in various places in the payoff table. It was stipulated that x is the
2This conclusion is not tied especially closely to the maximin rule. Someone who believes

that calculations involving probabilities are here unsafe might argue: After I have made my
choice and the envelopes have been opened, I will be glad or disappointed in proportion to
the difference between the dollar amount I in fact obtained and the dollar amount I would
have obtained if I had chosen otherwise. If I were to swap to Beta, and it turned out that Alpha
contained more money, then my disappointment would be measured by x/2, whereas if I were to
keep Alpha and it turned out that Beta contained more money, then my disappointment would
be measured by x. My policy is to act in such a way as to minimise my possible disappointment.
Therefore I should swap envelopes.
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unseen amount of money in Alpha. But this stipulation itself requires inter-
pretation.
Consider the assertion ‘The Prime Minister used to be Keating but now

is Howard.’ The phrase ‘the Prime Minister’ is not being used to pick out
an individual, with the result that the sentence says of this individual that he
used to be identical with Keating but is now identical with Howard. Rather
the phrase ‘the Prime Minister’ is being used to state a condition, and what is
asserted is that this condition was once fulfilled by Keating but is now fulfilled
by Howard.
Suppose that the singular term ‘Jack the Ripper’ was originally introduced

by someone’s saying, ‘Let us call the person who murdered these women “Jack
the Ripper”.’ Is it epistemically certain for us, given that these women were
murdered by one person, that Jack the Ripper is a murderer? It is, if we are
using the schema ‘Jack the Ripper is #’ as an abbreviation of the schema ‘The
person who murdered these women is #.’ In contrast, the sentence ‘None of
Jack the Ripper’s friends know that he is a murderer’ should be interpreted not
as ascribing to the friends ignorance of the meaning of the name ‘Jack the Rip-
per,’ but rather as saying ‘Take whichever person murdered these women: it is
true of him that none of his friends know that he is a murderer.’ And since you
and I do not know the identity of Jack the Ripper, there is no-one of whom we
can truly say ‘It is epistemically certain that he murdered these women.’ If we
are using the expression ‘Jack the Ripper’ to pick out a specific (but unknown)
individual, then the sentence ‘It is epistemically certain for us, given that these
women were murdered by one person, that Jack the Ripper is a murderer,’ ex-
presses a false de re modal proposition. Indeed, the following expresses a de
re modal truth: ‘Consider Jack the Ripper’s father: it is epistemically possible
that he is the real murderer of these women.’
So what about the definite description ‘The amount of money in Alpha’

and the symbol ‘x’? Well, the most obvious way to think about the payoff table
is this:
Consider this specific amount of money, x. It is now safely in Alpha, and

will be neither increased nor decreased by your decision. If you , you will
get this amount of money. If you , you will get either double or half this
amount of money. It is clear that  has the best worst possible outcome.
Plainly, in this line of thought ‘x’ is being used de re: it is intended to pick

out a specific sum—how much is at present unknown but it is either $10 or
. . . Given this understanding of the role of ‘x,’ there arises a decisive objection
to the argument based on the payoff table displayed above. It is epistemically
possible (since physically possible, and consistent with the evidence) that Al-
pha contains a sum of money other than the foregoing specific amount. For
example, the following expresses a de re modal truth: ‘Consider x minus one
cent: it is epistemically possible that this amount is in Alpha.’
Therefore, assuming for the sake of argument that we can properly draw

up a payoff table expressed in terms of ‘x,’ then the table should list, as pos-
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sible outcomes of your performing , your obtaining x minus one cent, x
plus one cent, x minus 2 cents, x plus 2 cents, and so on. For each of these,
the payoff table should list two corresponding possible outcomes of your per-
forming , namely your obtaining twice or half the specified outcome of
your performing . (This does not entail that the table should incorporate
the assumption that there are twice as many possible outcomes of  as of
. That assumption would reflect double counting,—e. g., neglecting the
fact that $2 is both twice $1 and half of $4; and of course such an assump-
tion would be inconsistent with our intuitive conviction that, however this or
that table might be drawn up,  and  are symmetrical with respect to
possible outcomes.)
We should now draw up a revised table, centred on x. How many columns

does the complete table contain? Although for obvious reasons the amount of
money in Alpha must be less than, say, $10100, there is no maximum amount of
money that Alpha might contain. So the complete table contains indefinitely
many columns. Since we are concerned with whether there is a best worst
possible outcome, we can concentrate on the left hand side, which lists possible
outcomes of  that are below x. Here is a fragment:

Alpha: $x − 0.1 Alpha: $x − 0.1 Alpha: $x Alpha: $x
Beta: $(x − 0.1)/2 Beta: $2x − 0.2 Beta: $x/2 Beta: $2x

 $(x − 0.1)/2 $2x − 0.2 $x/2 $2x
 $x − 0.1 $x − 0.1 $x $x

Because the full table has indefinitely many payoff columns to the left of those
I have shown, it is plain that the full table does not register a worst possible out-
come either of  or . Indeed, there is no best worst possible outcome
specifiable in terms of ‘x.’ Hence the argument for  fails.
It might be said that there is a worst possible outcome of , namely

that you get 1 cent. This remark has a number of things wrong with it, the
most important of which is that it does nothing to rehabilitate the argument
that we have been considering for , since obviously if we countYour getting
1 cent as a possible outcome of  then we will have to count it as a possible
outcome of  too.
For the last few paragraphs I have been working with the most obvious

interpretation of ‘x,’ namely that it picks out that specific sum of money that
is in fact contained in Alpha, and that the payoff table records de re modal
truths. But we should look briefly at the alternative interpretation, that ‘x’
instead specifies a condition that various different sums of money might fulfil.

Beta has 2x Beta has x/2

 2x x/2

 x x
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Under the alternative reading, the presence of ‘x’ in both cells in the ‘’
row fails to embody the truth that Alpha contains some definite amount of
money that you will get if you perform . Instead, ‘x’ merely indicates that
if you perform  you will get some sum that will fulfil the condition is the
amount of money in Alpha. Similarly with the expressions ‘2x’ and ‘x/2’. Under
the alternative interpretation of the table, we are not entitled to assume that
the expression ‘2x’ in the first row refers to a greater dollar amount than the
expression ‘x/2’ in the first row. Therefore we cannot read off from the table
the statement that  has the best worst possible outcome. Plainly this
interpretation can fairly be labelled ‘deviant,’ in that the table so interpreted
does not reflect or facilitate the intended argument for performing .
We now have a diagnosis of where people’s reasoning goes wrong in the

x- and the y-. Ambiguity in the symbols ‘x’ and ‘y’ ob-
scures problems with the construction of the payoff tables, and so causes us
make fallacious inferences from them.
Let us now briefly consider the z-, the one that reaches what is

intuitively the correct conclusion. The role of ‘z,’ I shall assume, is to pick out
that specific sum of money that is in fact distributed between the envelopes.
It is physically possible, and consistent with the evidence, that a sum of money
other than z was distributed between the envelopes. The payoff table given
in connection with the z- is therefore incomplete. But fact does
not undermine the crucial lemma of the z-, that there is no best
worst possible outcome. Indeed, the properly revised table will enable the
formulation of a modified z-, along obvious lines, which supports
that conclusion.

3 T    x-
Before we leave the Maximin Version, we should look at two interesting vari-
ations on the theme. The first is a line of reasoning designed to avoid the use
of singular terms to denote outcomes:
Your decision will not cause money to be transferred into or out of either

of the envelopes. If you perform  then you will be wealthier than you
were before you picked up Alpha. If you perform , then you will also be
wealthier than you were before you picked up Alpha: you will be either more
wealthy or less wealthy than you would be if you performed , but you do
not know which. If you perform  then you might end up less wealthy than
you would be if you performed , but if you perform  then you cannot
end up less wealthy than you would be if you performed . Therefore, of
the two actions  and ,  has the best worst possible outcome.
The conclusion is implausible, and a parallel argument for the opposite

conclusion can be formulated simply by interchanging the words ‘’ and
‘.’ So there must be a fallacy in the inference from the premises to the
conclusion. True: if you perform  then you might end up less wealthy than
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youwould be if you performed . But although this entitles us to assert that
 has a possible outcome that is worse than at least one possible outcome
of , it does not entitle us to assert that  has a possible outcome that
is worse than all possible outcomes of .
But surely, it might be objected, there is no possible outcome of  in

which you end up less wealthy than you will be if you perform , whereas
there is a possible outcome of  in which you end up less wealthy than you
would be if you performed . Well it cannot be the case that both you
perform  and you have the description ends up less wealthy than you will be
if you perform  true of you. Nevertheless there is a possible outcome of
your performing  in which you end up less wealthy than you will in fact
be if you perform . (Suppose that Alice has mistakenly believed that you
are a basketball player. On meeting you for the first time she says, ‘I assumed
that you were taller than you in fact are.’ One interpretation of this sentence
ascribes to her an assumption that is logically impossible; there is a more char-
itable interpretation that does not.)
The second variation on the x- urges you to reason in this way:

(-1) Suppose, contrary to fact, that you opened Alpha and discovered how
much money it contained. Then whatever this amount was, you would
identify  as the action that had the best worst possible outcome.
(Suppose, for example, that you found that there was in fact $10 in Alpha.
Then you would identify your getting $10 as the worst possible outcome
of , and would identify your getting $5 and your getting $20 as the
two possible outcomes of . You would therefore identify  as
the action that had the best worst possible outcome. And so on.)

(-2) Therefore in the actual situation, in which you do not know how much
money Alpha contains, you should perform .

The invalidity of the argument is obvious from the fact that a parallel argu-
ment for the opposite conclusion can be formulated simply by replacing ‘Alpha’
with ‘Beta’ and ‘’ with ‘’. But where, exactly, does the argument go
wrong? Agreed: after you have discovered how much money Alpha contains,
 has a worse epistemically possible outcome than any epistemically pos-
sible outcome of . Moreover this truth is independent of the specific
amount that Alpha in fact contains.3 But it is dependent on the fact that you
have discovered how much money Alpha contains: the information about Alpha,
whatever the dollar amount involved, restricts the range of epistemically pos-
sible outcomes of  more narrowly than it restricts the range of epistem-
ically possible outcomes of . If you had instead discovered how much
money Beta contains, the resulting ranges of epistemically possible outcomes
would have been different. Therefore you should not slide from the fact that it

3Let us not press the point that there is an exception: the case in which you discover that
Alpha contains one cent.
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does not matter how much money Alpha contains to the thesis it does not mat-
ter whether you know how much money Alpha contains. And you should not
conclude that in the actual case, in which you do not know how much money
Alpha contains,  has a worse possible outcome than any possible outcome
of  and so you should perform .4

4 A     C A.
Here again is the Classical Argument to the conclusion that you should swap
envelopes.

(-1) Let x be the amount of money in Alpha.

(-2) Then Beta contains either 2x or x/2.

(-3) These two possibilities are equally likely.

(-4) The expected value of  is (0.5×x)+(0.5×x) = x, and the expected
value of  is (0.5× 2x) + (0.5× x/2) = 1.25x.

(-5) Therefore you should swap.

There is an ambiguity in the symbol ‘x’ that appears in the argument 1.–5.
Either ‘x’ is being used de re, to pick out a specific sum whose size we have
no rational way of estimating, or else ‘x’ is being used to identify a condition
that various specific sums can fulfil.
Suppose that the former is the case. Then (-4) is false. The expected value

of  cannot be the definite but unknown quantity denoted by ‘x’, and the
expected value of  cannot be the definite but unknown quantity denoted
by ‘1.25x’, since (given only the information on hand)  and  have no
expected values.
Here are four ways of bringing out the point. Firstly, consider the argu-

ment:

(-1) This table is roughly circular.

(-2) Let ‘L’ denote the average length in centimetres of the table’s diameters

(-3) Therefore our best estimate of the circumference of the table is πL.
4Suppose that we were to write in to the specification of the problem the existence of an

actual spectator who knows how much money Alpha contains but does not know how much
money Beta contains, and who has no causal interaction with you, the agent. Whatever amount
of money is in Alpha,  has, relative to the epistemic state of this spectator, a worse possible
outcome than any possible outcome of . You, we might suppose, know this. Does it follow
that  has, relative to your epistemic state, a worse possible outcome than any possible
outcome of ? Surely not.
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If ‘L’ is being used to refer to the specific number, but we have no idea what
number that is, and no other relevant information, then we do not have a best
estimate of the circumference of the table. This is consistent with a truth im-
plied by the first premise, that when we do discover the length of the diameter
and the circumference, we will find that the latter is roughly π times the former.
Furthermore, suppose that there is a second table, also roughly circular, whose
average diameter is twice the length of the first table’s. We can sensibly assert
that our best estimate of the ratio of the two circumferences is 2, but not that
the ratio of our best estimates of the circumferences is 2.
Here is the second consideration. Suppose you introduce the expression

‘Jack the Ripper’ by declaring that you will be using it de re, to pick out the
murderer of these women. Nevertheless you do not know who Jack the Rip-
per was, and you do not know of Jack the Ripper that he murdered anyone.
Similarly, if you the agent are using the expression ‘x’ de re, to refer to the spe-
cific sum of money that is in fact in Alpha, it remains the case that you do not
know how much money is in Alpha, and you do not know of the specific sum
of money that happens to be in Alpha that it is equal to the expected value of
. Hence you do not know that the expected value of  is equal to x.
Hence you are not in a position to accept (-4) But if you, an ideally rational
agent, are not in a position to accept (-4), then how can (-4) be true?5
Thirdly, if ‘x’ is tied to the specific amount of money that happens to be in

Alpha, then (-4) entails truths like the following:

• If x = $10 then the expected value of  is $10, and the expected
value of  is $12.50.

• If x = $11 then the expected value of  is $11, and the expected
value of  is $13.75.

But (-4), so understood, cannot be true. Suppose that while prospective buy-
ers of tickets in a certain lottery know the probability that any given ticket will
win, they have no clue to how much the prize is. If it turns out that the prize
was $10, 000, this does not mean that the expected value of buying a ticket was
100 times what it would have been if the prize money had been $100. The con-
trary supposition largely detaches the concept of expected value from its point,
its established roles in evaluation and choice. Similarly, the expected value of
 cannot depend on how much money Alpha in fact contains (unknown to
the agent). So if ‘x’ is being used de re, to pick out this specific amount of money,
the expected value of  cannot be identified with x. Indeed, given the in-
formation on hand, it cannot properly be identified in any other way, either.
Now the concept of expected value is such that if an action possesses an expec-
ted value for an agent at a time then that expected value can be identified by

5An extended presentation and defence of this argument obviously would require delving
deeply into the theory of de re belief.
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the (ideally rational) agent at that time, given the information then available to
the agent. Therefore  lacks an expected value.
Fourthly, if ‘x’ is being used to pick out the specific sum that is in fact in

Alpha, then  and  have no expected values because some or all of the
possible outcomes do not possess determinate probabilities. To calculate the
expected value of an action you consider each possible outcome and multiply
its value (here measured by units of currency) by the probability of obtaining
it given that you perform the action in question; you then add together the
products thereby obtained. Now as I argued in Section 2 of this paper, if ‘x’ is
being used to pick out the specific sum that is in fact in Alpha, it is epistem-
ically possible that Alpha contains a sum of money other than the foregoing
specific amount. For example, the following expresses a de re modal truth:
‘Consider x plus $1000: it is epistemically possible that this amount is in Al-
pha.’ Although there is no doubt that Alpha contains a finite amount of money,
there is no maximum amount of money that Alpha might contain. So there are
indefinitely many possible outcomes of performing  and . Hence the
probability that you will obtain a given outcome if you perform, say,  is
indefinite. Specifically, the probability that you will get will get 2x if you per-
form  is not 0.5 but indefinite. Hence no calculation of expected value is
possible.6
Let us turn now to the other candidate interpretation of ‘x,’ according to

which ‘x’ identifies a condition that various specific sums might fulfil—viz. the
condition is the amount of money in Alpha. Once again,  and  do not
have expected values. There are a great many relevant possible outcomes of
—e. g., that you get $1, that you get $1000, . . . All we know about their
values is that, whatever they are, they fulfil the condition is measured bywhatever
quantity of money is in Alpha. All we know about the values of the great many
relevant possible outcomes of  is that some of them fulfil the condition
is measured by twice whatever quantity of money is in Alpha while others of them
fulfil the condition is measured by half of whatever quantity of money is in Alpha.
We also know that these two conditions are equally likely to be fulfilled. But
these facts do not enable us to multiply relevant values by relevant probabilities
and thereby confer a coherent meaning on the assertion, made in the context
specified above, ‘The expected value of  is equal to whatever quantity of
money is in Alpha.’ The matter turns on the ’logic’ of expected value. (There is
no problem about the meaning of the statement ‘The payoff of  will be
equal to whatever quantity measures the money in Alpha.’)
It is perhaps worth making a brief comment on the idea that ‘x’ should be

regarded as a variable. When we say that the area of a circle is πD, where D

is the diameter, the letter ‘D’ is often understood as a variable ranging over
6Nevertheless, leaving aside general doubts about the principle of indifference, we can sens-

ibly say that if the agent knows that Alpha contains $10, and that Beta contains either $20 or
$5, and nothing more is known, then the epistemic probability of getting $20 if you perform
 is definite—in fact, is 0.5. And so on.
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lengths, and in that case what we mean by what we say is this: There are many
possible numerical values that the surface area of a circular table top can have,
and (given an appropriate choice of units of measurement) they all fulfil the
condition is equal to π multiplied by whatever number fulfils the conditionmeasures
the length of the table’s diameter. Similarly if we treat ‘x’ as a variable ranging
over possible dollar amounts in Alpha when we say ‘The value of  is x’
what we are taking ourselves to be saying is that the value of  fulfils the
condition is measured by whatever quantity of money is in Alpha. This being so,
the suggestion that ‘x’ should be regarded as a variable amounts to basically a
variant of the idea, considered in the previous paragraph, that ‘x’ identifies a
condition that various specific sums might fulfil.7
The argument so far presented in this Section was constructed before I

had read Terence Horgan’s fine paper on the Classical Version.8 Our accounts
are similar in that both focus on ambiguities in expressions such as ‘x’ and ‘the
amount of money in Alpha.’ Horgan distinguishes between standard and non-
standard expected utility, in terms of whether or not the calculation involves
the specifications of possible outcomes, utilities and probabilities made using
canonical or non-canonical referring expressions. (A referring expression is ca-
nonical for an agent only if its referent is epistemically determinate for the
agent, given the agent’s total available evidence.) Horgan distinguishes several
kinds of non-standard expected utility—x-based, y-based, and z-based—for
the actions  and ; the differences are a matter of what non-canonical
referring expression is used to specify the states of the world and the payoffs.9
Horgan regards the classical argument up to and including step (-4) as sound,

7Someone might try to evade the foregoing arguments by employing the idea of conditional
expected probability, where to calculate the expected value of an action conditional upon the
obtaining of a state of affairs S, you consider each possible outcome and multiply its value
(measured by units of currency) by the probability of obtaining it given that both you perform
the action in question and S obtains; you then add together the products thereby obtained.
Accordingly, let us try rewriting step (-4) of the Classical Argument as (-4 ′) The conditional
expected value of —i. e. the expected value relative to the assumption thatAlpha contains x—is (0.5×
x) + (0.5× x) = x, and the conditional expected value of  is (0.5× 2x) + (0.5× x/2) = 1.25x.
Surely if ‘x’ is being used to pick out the specific sum of money that happens to be in Alpha,

then (-4 ′) entails that if x = $10 then EV( | Alpha contains x) is $10, and that if x = $11
then EV( | Alpha contains x) is $13.75, and so on. For reasons similar to those given in
the main text, the function EV , when put to use in (-4 ′), does not amount to a concept of
conditional expected value, and even if it did then  and  would have no expected values
relative to ‘Alpha contains x’ because some or all of the possible outcomes would not possess
determinate probabilities.

8‘The Two-Envelope Paradox, Nonstandard Expected Utility, and the Intensionality of Prob-
ability,’ Noûs 34 (2000), 578–603.

9Horgan’s pp. 584f, 592 make it clear that x-based nonstandard expected utility is calculated
by letting ‘x’ go proxy for the expression ‘the actual amount of money in Alpha,’ where, as the
word ‘actual’ is a rigidifying operator and so ‘x’ is a rigid designator. So talk of x-based non-
standard expected utility involves treating ‘x’ as picking out the specific dollar amount at Alpha
in fact contains, rather than as identifying a condition that various specifc dollar amounts can
fulfil.
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provided only that we realise that the ‘expected utility’ spoken of in (-4) is x-
based and non-standard. Horgan locates the error in the classical argument as
lying in the inference from (-4) to (-5). For there is no correct rule of rational
decision theory requiring the agent to maximise non-standard expected utility.
What a rational agent should do is rather maximise standard expected utility.

I, however, deny the existence of x-based non-standard expected utility, at
least if it is supposed to be expected utility identified in a non-standard way, or a
variety of expected utility, or a notion of expected utility.10
Teachers might distinguish several kinds of overall grade, based on different

ways of calculating a student’s overall grade from the numerical marks given for
many pieces of work. They might, for example, take the average, or alternat-
ively ignore the lowest mark and take the average of the others. What makes
the outcomes of these calculations deserve the description ’overall grade’? The
ways the teachers and other people are in principle prepared to put the out-
comes to use: forming an impression of the student’s abilities, deciding which
of several competing students should be awarded some prize, and so on. Even if
the teachers always use onemethod, they regard it as intelligible that onemight
use the others for the relevant purposes, and regard the choice of methods as
requiring serious deliberation. But what makes it the case that the results of
Horgan’s calculations deserve the description ‘species of expected utility’? The
x-based and y-based calculations do not issue in any output, specified in such
terms as ‘x’ and ‘1.25y,’ that you can regard as offering serious help in ranking
available actions, or events in terms of the degree to which you should wel-
come them. (Of course if you are in a position to specify the output in terms
of numerals then you know either how much money is in Alpha or how much
is in Beta, and you face a decision problem quite different from that posed in
the Classical Version.) The point here goes beyond Horgan’s remark that what
the basic normative principle of decision theory prescribes is choosing the ac-
tion with maximum standard expected utility.11 Suppose, for example, that a
coin is to be tossed and if heads result then you will get the contents of Al-
pha, whereas if tails result you will get the contents of Beta; a calculation of
‘x-based non-standard expected utility’ for the events heads and tails will not
tell you which event to hope for.
Furthermore, Horgan commits himself to the statements that if Alpha, un-

known to the agent, contains $16 dollars then the x-based non-standard expec-
ted utility of  is 16, while if Alpha, unknown to the agent, contains $32
then the x-based non-standard expected utility of  is 32.12

10We have extended the concept of number so that complex numbers can be regarded as a
kind of number, but it remains the case that although the expressions ‘plastic duck’ and ‘Chris-
tian Scientist’ have legitimate uses, plastic ducks are not a variety of duck, and the notion of a
Christian Scientist is not a notion of scientist.

11ibid., p. 593.
12ibid., p. 592.
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This is rather like saying that if you do not know anything about the amount
of a lottery prize, and the prize is in fact $10, 000, and if you are an ideally ra-
tional agent, then there is some kind of expected utility such that the action
of buying a ticket is in fact twice what it would have been had the prize been
$5, 000. No. As I have already pointed out, such an assertion largely detaches
the concept of expected value from its point, its established roles in evaluation
and choice. If you have no idea how much the prize is, then the action of
buying a ticket has no expected utility of any kind.
The fact that in the two-envelopes case Horgan’s numbers 16 and 32 are

the results of calculations bearing some structural similarities to calculations
of standard expected utility does not settle whether the x-based non-standard
utility being talked about here is a kind of expected utility. It is not.

5 E     
It is worth pausing to consider the following variation on the Classical Argu-
ment:

(-1) Suppose, contrary to fact, that you opened Alpha and discovered how
much money it contained. Then whatever this amount was, you would
identify  as the action that had the higher expected utility. (Suppose,
for example, that you found that there was in fact $10 in Alpha. Then
 would have an expected value of $10 while  had an expected
value of $12.50. And so on.13)

(-2) Therefore in the actual situation, in which you do not know how much
money Alpha contains, you should perform .

Let us, for the sake of discussion, leave aside general doubts about the prin-
ciple of indifference. After you have discovered how much money Alpha con-
tains,  has a higher expected value than . This truth is independent
of the specific amount that Alpha in fact contains. But it is dependent on the
fact that you have discovered how much money Alpha contains: for if you had
not opened Alpha, and had instead been told how much money Beta contains,
the expected values of  and  would have been different. Therefore
you should not slide from the truth that it does not matter how much money
Alpha contains to the thesis it does not matter whether you know how much
money Alpha contains. And you should not conclude that in the actual situ-
ation, in which you do not know how much money Alpha contains,  has
a higher expected value than  and so you should swap envelopes.

13The idea behind the words ‘and so on’ might be expressed in the schema: If the agent knows
that Alpha contains $x, and that Beta contains either $2x or $x/2, and that is the agent’s total relevant
information, then the expected value of  is $1.25x. (The ‘if . . . then’ structure of the schema
hides the fact that the expected value function incorporates epistemic probabilities that are
relative to the agent’s information about Alpha’s contents.)
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6 C
In both the Classical and Maximin versions of the paradox, you should be in-
different between  and  because you do not have a good reason for
preferring one action to the other. (I have identified fallacies involved with
what at first appeared to be good reasons.) More specifically, as far as your
beliefs, desires, and values are concerned, you are symmetrically situated with
regard to the envelopes, except for the fact that one of them is already in your
hand while other is not, and this fact does not provide a good reason for prefer-
ring one action to the other.14

14Unpublished work by Graham Priest and Greg Restall first drew my attention to the Two-
Envelope Paradox. I thank them, and also James Dreier, Alan Hajék, Allen Hazen, Lloyd Hum-
berstone, Graham Oppy and two anonymous referees, for stimulating and helpful discussion.
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