
Intersection Type Systems and Logics
Related to the Meyer–Routley System B+

M B
D  M
U W

mbunder@uow.edu.au

Received by Greg Restall
Published September 16, 2003

http://www.philosophy.unimelb.edu.au/ajl/2003

c© 2003 Martin Bunder

Abstract: Some, but not all, closed terms of the lambda calculus have
types; these types are exactly the theorems of intuitionistic implicational
logic. An extension of these simple (→) types to intersection (or →∧)
types allows all closed lambda terms to have types. The corresponding→∧ logic, related to the Meyer–Routley minimal logic B+ (without ∨),
is weaker than the→∧ fragment of intuitionistic logic. In this paper we
provide an introduction to the above work and also determine the →∧

logics that correspond to certain interesting subsystems of the full →∧

type theory.

1 S T L C
In standard mathematical notation “f : α → β” stands for “f is a function from
α into β.” If we interpret “:” as “∈” we have the rule:

f : α → β t : α

f(t) : β

This is one of the formation rules of typed lambda calculus, except that there
we write ft instead of f(t). In λ-calculus, λx.M represents the function f such
that fx = M. This makes the following rule a natural one:

[x : α]
···

M : β

λx.M : α → β

We now set up the λ-terms and their types more formally.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

mailto:mbunder@uow.edu.au
http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 44

D 1 (λ-)

1. If x is a variable, x is a λ-term.
2. IfM and N are λ-terms so is (MN) ().
3. IfM is a λ-term and x a variable, λx.M is a λ-term. (λ-).

D 2 (F  B V) Any occurrence of a variable
x in a subterm λx.N of M is a  occurrence. Any occurrence of x in
M that is not bound is a  occurrence. FV(M) is the set of free variables
occurring inM. If FV(M) = ∅,M is said to be .

D 3 (→ T)

1. a, b, c, . . . are  .
2. If α and β are types, then so is (α → β). (α → β) is an  .

D 4 (T A, C) IfM is a λ-term and α a
type, M : α is a  . A  is a set of type assignments
where the terms are distinct variables. Contexts are denoted by∆, ∆ ′, ∆1, ∆2, . . .

D 5 (T T A S TAλ)→ types are assigned
to λ-terms as follows:
() ∆, x : α ` x : α

(→E)
∆ ` M : α → β ∆ ` N : α

∆ ` MN : β

(→I)
∆, x : α ` M : β

∆ ` λx.M : α → β

We will sometimes write “`λ” for the relation ` of this system, to distinguish
it from other consequence relations.

D 6 (R, N F) λ-terms  when parts
are replaced as follows:

(β) (λx.M)N . [N/x]M

(η) λx.Mx . M (if x 6∈ FV(M)).

A λ-term, no part of which can be reduced by (β) or (η), is said to be in
  . If a term can be reduced to a term in strong nor-
mal form it is said to    .

(For more details on the λ-calculus see Hindley and Seldin [11].)

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 45

E 7 Consider contexts ∆ = {x : a, y : a → a → b, z : (a → b) → c}

and ∆ ′ = {y : a → a → b, z : (a → b) → c}. We have the following type as-
signment:

∆ ′ ` z : (a → b) → c

∆ ` x : a ∆ ` y : a → a → b
(→E)

∆ ` yx : a → b ∆ ` x : a
(→E)

∆ ` yxx : b
(→I)

∆ ′ ` λx.yxx : a → b
(→E)

∆ ′ ` z(λx.yxx) : c
(→I)

y : a → a → b ` λz.z(λx.yxx) : ((a → b) → c) → c
(→I)

` λy.λz.z(λx.yxx) : (a → a → b) → ((a → b) → c) → c

We note that, looking only at the types in the above type assignment, we have
a natural deduction style proof of a theorem of the intuitionistic implicational
logic H→. The final term λy.λz.z(λx.yxx) is a very compact representation of
the whole proof. Each application represents a modus ponens step and each
λ-abstraction a use of the→ introduction rule.

This applies in general:

T 8 (E  TAλ  H→)
(∃M) `λ M : α ⇔ `H→ α

(For details on TAλ, see Hindley [10].)

2 I T
There are closed terms that do not have a simple type. For example, for the
term λx.xx to have a type, we must have x : α → β as well as x : α, which is
impossible in TAλ.
An intersection type assignment x : (α → β) ∧ α allows x : α → β as well as

x : α and so xx : β and λx.xx : (α → β) ∧ α → β. This is set up formally as
follows:

D 9 (→∧  I T)

1. a, b, c, . . . are .
2. If α and β are types, so are (α → β) and (α ∧ β).

D 10 (T T A S TAλ∧)
Types are assigned to λ-terms by (Var), (→E), (→I) and the following rules:

∆ ` M : α ∆ ` M : β
(∧I)

∆ ` M : α ∧ β

∆ ` M : α ∧ β

∆ ` M : α

∆ ` M : α ∧ β
(∧E)

∆ ` M : β

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 46

∆ ` λx.Mx : α
x 6∈ FV(M) (η)

∆ ` M : α

We will sometimes write “`λ∧” for the ` of this system.

E 11 Let ∆ = {x : (a → b) ∧ (a → c), y : a}. We have the following
type assignment:

∆ ` x : (a → b) ∧ (a → c)
(∧E)

∆ ` x : a → b ∆ ` y : a
(→E)

∆ ` xy : b

∆ ` x : (a → b) ∧ (a → c)
(∧E)

∆ ` x : a → c ∆ ` y : a
(→E)

∆ ` xy : c
(∧I)

∆ ` xy : b ∧ c
(→I)

x : (a → b) ∧ (a → c) ` λy.xy : a → b ∧ c
(η)

x : (a → b) ∧ (a → c) ` x : a → b ∧ c
(→I)

` λx.x : (a → b) ∧ (a → c) → a → b ∧ c

The→∧ type theory was first introduced by Coppo and Dezani [5]. A useful
survey article is Hindley [9].

An alternative formulation of TAλ∧ replaces (∧E) and (η) by

∆ ` M : α α ≤ β
(≤)

∆ ` M : β

where ≤ is a binary relation over types given by:

D 12 (≤)

A R
1. α ≤ α 5. α ≤ β & β ≤ γ ⇒ α ≤ γ

2. α ∧ β ≤ α 6. α ≤ β & α ≤ γ ⇒ α ≤ β ∧ γ

3. α ∧ β ≤ β 7. α ≤ β & σ ≤ τ ⇒ β → σ ≤ α → τ

4. (α → β) ∧ (α → γ) ≤ (α → β ∧ γ)

The standard (but equivalent) formulation replaces rule 6 by

α ≤ α ∧ α and

α ≤ β & δ ≤ γ ⇒ α ∧ δ ≤ β ∧ γ.

We can define = by

D 13 (=) α = β is α ≤ β & β ≤ α.

The commutative and associative properties for ∧ are easy to prove.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 47

3 B+  ≤-
Meyer realised that the ≤-postulates relate to his and Routley’s minimal rele-
vance logic B+ [13, 14].

D 14 T  B+ ( ∨)

A
a1. ` α → α

a2. ` α ∧ β → α

a3. ` α ∧ β → β

a4. ` (α → β) ∧ (α → γ) → (α → β ∧ γ)

R
(→E) α → β,α ⇒ β

(∧I) α, β ⇒ α ∧ β

 α → β ⇒ (β → γ) → α → γ

 β → γ ⇒ (α → β) → α → γ

We will sometimes write “`B+” for the ` of this system.

T 15 (E  ≤  B+)

1. If α ≤ β then `B+ α → β.
2. If `B+ α then there are αi and βi where α ≡ (α1 → β1)∧ · · ·∧ (αn → βn)

and for each i, αi ≤ βi.

P Venneri [15], Theorem 4.5. ]

Theorem 16 below, which is proved in [2], provides us with a decision proce-
dure for B+.

T 16 (D P  B+)

α ≤ β if and only if α is some intersection of atomic types a1, . . . , an and
arrow types (α1 → γ1), . . . , (αm → γm) and β is some intersection of atomic
types b1, . . . , bk and arrow types (β1 → δ1), . . . , (βe → δe) such that, (i)
{b1, · · · , bk} ⊆ {a1, . . . , an} and (ii) for each i where 1 ≤ i ≤ e, there are
j1, . . . , jr ∈ {1, · · · ,m} where αj1 ∧ · · ·∧ αjr ≥ βi and γj1 ∧ · · ·∧ γjr ≤ δi.

E 17 The following formula is a theorem of B+

[(a → b) ∧ (a → c) → (a → b ∧ c)]∧

[a ∧ b ∧ g ∧ (a ∧ b → c) ∧ (c → a) ∧ (a → e) →
a ∧ (c ∧ a ∧ b → e ∧ a) ∧ (a ∧ d ∧ b → e) ∧ (a ∧ b → c)]

since (a → b) ∧ (a → c) ≤ a → b ∧ c and a ∧ d ∧ g ∧ (a ∧ b → c) ∧ (c →
a) ∧ (a → e) ≤ a ∧ (c ∧ a ∧ b → e ∧ a) ∧ (a ∧ d ∧ b → e) ∧ (a ∧ b → c),
so the result follows by Theorems 15 and 16.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 48

4 T L  TAλ∧

As the types of TAλ were theorems ofH→, a natural question arises: What log-
ical system is represented by the types of TAλ∧? This question was answered
for a combinatory logic version TA∧ of TAλ∧ by Venneri [16] and thus, it was
implicitly answered for TAλ∧ using translations to and from λ-terms to combi-
natory terms [1,2].

D 18 (C T)

1. S, K, I and variables are combinatory terms.
2. If X and Y are combinatory terms so is (XY) ().

Given a λ-term M we can find a corresponding combinatory term MH and,
conversely, for each combinatory term X there is a λ-term Xλ. The process of
findingMH relies on the presence of a bracket abstraction operator λ∗.

D 19 (H  λ)

Given λ∗, a bracket abstraction operator, the maps H from λ-terms to combi-
natory terms, and λ from combinatory terms to λ terms are defined as follows:

λ-     λ-
xλ = x

xH = x Kλ = λxy.x

(λx.M)H = λ∗x.MH Sλ = λxyz.xz(yz)

(MN)H = (MHNH) Iλ = λx.x

(XY)λ = XλYλ

The details of the abstraction operator λ∗ need not concern us here. The rel-
evant requirement for a bracket abstraction operator is that it makes available
the following equivalence.

T 20 IfM is a λ-term,MλH = M.

P Curry and Feys [7] or Dezani and Hindley [8]. ]

The following is one of Venneri’s equivalent type assignment systems for com-
binatory logic [16] that is best suited to our purposes:

D 21 (T T A S TA∗
∧)

A R
∆ `∗ I : α → α (), (→E),

∆ `∗ K : α → β → α (≤) and
∆ `∗ S : (α1 → β → γ) → (∧I-s)

(α2 → β) → α1 ∧ α2 → γ

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 49

where the new rule (∧I-s) is

∆ `∗ X : α β = s(α) FV(X) = ∅

∆ `∗ X : α ∧ β

where where s(α) is a substitution instance of α.

The Venneri Hilbert-style logic, which we call V , that corresponds to this is:

D 22 (T L V)

A
a1. ` α → α

a2. ` α → β → α

a3. ` (α → β → γ) → (α → β) → α → γ

R
(-∧) Any finite intersection of instances

of the same axiom is a theorem of V .

()
∆ ` α → β ∆ ` α

∆ ` β

()
`B+ α → β ∆ ` α

∆ ` β

Here ∆ is a set of formulas (or types) rather than a context.

The ` defined here will sometimes be written as “`V .” Venneri then proves:

T 23 (∃X) `∗ X : α ⇔ `V α

Note that this logic does not have (and cannot have) the full strength ∧I rule:

∆ ` α ∆ ` β

∆ ` α ∧ β

and that the ≤ rule is replaced using the Routley–Meyer logic B+.
We also have the following connection between `λ and `∗:

T 24 (E  `λ  `∗)

(i) `∗ X : α ⇔ `λ Xλ : α.
(ii) `λ M : α ⇔ `∗ MH : α.
P By Venneri [16] Theorem 2.13 and Remark 2.14 and Dezani and Hind-
ley [8] Theorem 3.11. Part (i) of the latter theorem gives (i) above and part (ii)
gives (ii). ]

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 50

Theorem 24 shows that the logic V is also the logic of the types of TAλ∧.
In [2] we proposed a λ-calculus version of Definition 21, TA ′

λ∧, from which
a natural deduction style logic for TAλ∧ can be derived. This, of course, will be
equivalent to V .

D 25 (T  TA′
λ∧)

() ∆, x : α `′ x : α

(→I)
∆, x : α `′ M : β

∆ `′ λx.M : α → β

(→E)
∆ `′ M : α → β ∆ `′ N : α

∆ `′ MN : β

(∧I-s′)
∆ `′ M : α s(∆) ≡ ∆

∆ `′ M : α ∧ s(α)

()
∆ `′ M : α α ≤ β

∆ `′ M : β

From this we define the corresponding natural deduction style logic.

D 26 (T  V ′)

() ∆, α ` α

(→I)
∆, α ` β

∆ ` α → β

(→E)
∆ ` α → β ∆ ` α

∆ ` β

(∧I-s′)
∆ ` α s(∆) ≡ ∆

∆ ` α ∧ s(α)

()
∆ ` α `B+ α → β

∆ ` β

The ` defined here will sometimes be written “`V ′ .” We show in [2] that:

T 27 (∃M)∆ `λ∧
M : α ⇔ (∃M)∆ `′

λ∧
M : α ⇔ ∆′ `V ′ α ⇔

∆′ `V α, where ∆′ is ∆ with the ‘xi :’s deleted.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 51

5 I T S
Urzyczyn has shown in [15] that, given a ∆ and α, it is not decidable whether
there is a termM such that ∆ ` M : α. Kurata and Takahashi [12] have shown
that this property is decidable when the rule (∧I) (or (∧I-s) is omitted. The
question arises what happens when other rules such as (∧E), (≤) or (η) are
omitted, as well as, or instead of (∧I)? This question is tackled in another
paper [4]. What was needed first was an answer to the question: how many
different intermediate systems are there?

D 28 (≈1)

If A and B are type systems, then A ≈1 B if and only if

(∀∆, α,M)(∆ `A M : α ⇔ ∆ `B M : α)

Systems with equivalent “inhabitation properties,” and so equivalent logics, are
given by a different kind of equivalence:

D 29 (≈2)

If A and B are type systems, then A ≈2 B if and only if

(∀∆, α)[(∃M)∆ `A M : α ⇔ (∃M)∆ `B M : α]

It is these distinct systems that we are interested in here.

T 30 The type systems in each of the following sets, denoted by the
rules they have in addition to (), (→I) and (→E) are ≈1-equivalent:

1. (∧I) + (η) + (∧E), (∧I) + (≤) + (∧E),
(∧I) + (≤), (∧I) + (≤) + (∧E) + (η)

2. (≤) + (∧E) + (η), (≤)

3. (∧E) + (η)

4. (∧I) + (∧E)

5. (∧I) + (η)

6. (∧I)

7. (∧E)

8. −, (η)

The systems, denoted by 1 to 8, are related as in the first graph in Figure 1,
with downward lines leading from stronger to weaker systems, and systems not
connected by downward lines in either direction (such as 2 and 5, 3 and 5, 3 and
4 etc.) are independent.
P Bunder [3] Theorems 2.3, 7.1 and 7.2. ]

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 52

8

7

3

6

4
2

5

1

8

3,7

2

5,6

1,4

Figure 1: Systems under ≈1 and ≈2, respectively

T 31 The systems in the sets 1 to 8 in Theorem 30 satisfy: 1 ≈2 4,
3 ≈2 7 and 5 ≈2 6. These are related, with notation as in Theorem 30, in the
second graph in Figure 1.

P Bunder [3] Theorems 2.3, 7.1 and 7.2. ]

6 T L   I S
T 32 The type systems having (), (→I), (→E) and either (i) (∧I)+

(η)+(∧E), (ii) (∧I)+(≤), (iii) (∧I)+(≤)+(∧E), (iv) (∧I)+(≤)+(∧E)+(η)

or (v) (∧I)+(∧E) (i.e. those labelled 1. and 4. in Theorem 30) have the Venneri
logic V or V ′.

P Immediate, by way of Theorems 31 and 27. ]

T 33 The type systems having (), (→I) and (→E) (with, or with-
out (η)) has the logic H→, but with formulas that may involve ∧.

P Obvious. ]

T 34 The type theory based on (), (→I), (→E) and (≤) together
with either or both of (∧E) and (η) (i. e. system 2 in Theorem 30) has a logic
based on (), (→I), (→E) and ().

P By an easy induction on the derivation of any ∆ ` M : α in the type
theory, and an application of Theorem 15. ]

The remaining systems (3 and 7, on the one hand and 5 and 6 on the other) are
≈2-equivalent to type systems with restrictions on the rules regarding ≤.

D 35 (≤−2,3  ≤2,3)

(≤−2,3) is the (≤) rule without postulates 2 and 3. (≤2,3) is the (≤) rule with
only postulates 2 and 3.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 53

T 36 The type theory based on (), (→I), (→E), (∧I) and (η) is
≈2 equivalent to that based on (), (→I), (→E), (∧I) and (≤−2,3).

P [3] Corollary 5.5. ]

T 37 The type theory based on (), (→I), (→E) and (∧E) is ≈2

equivalent to that based on (), (→ I), (→ E) and (≤2,3).

P [3] Corollary 5.5. ]

To find the logics of types of these systems we need some results concerning
the restricted (≤) rules and a weaker version of B+.

D 38 (T  B−)

The logic B− has axioms (a1) and (a4) and all the rules of B+.

L 39 (i) If α ≤−2,3 then `B− α → β.
(ii) If `B− α then α ≡ (α1 → β1)∧· · ·∧(αn → βn) and for each i, αi ≤2,3 βi.

P As for Venneri [16] Theorem 3.4. ]

The following lemma (with an obvious proof ) is required

L 40 α ≤2,3 β if and only if for some γ, either α ≡ β ∧ γ or α ≡ γ ∧ β.

Now we can proceed to our final theorems.

T 41 The type theory based on (), (→I), (→E), (∧I) and (η)

(i. e. systems 5 and 6 of Theorem 30) has the logic of types V ′, except with
B+ replaced by B−.

P If, as before, we let ∆′ be ∆ without the ‘xi :’s we prove by induction
on the derivation of

∆ ` M : α

in this system,
∆′ ` α

in the given logic. For the type theory we use the system of rules, given in
Theorem 36, that includes (≤−2,3). Every proof step taken in the type theory
has an obvious counterpart in the logic. In the case of (≤−2,3) this is given by
Lemma 39. ]

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 54

T 42 The type theory based on (), (→I), (→E), and (∧E) has the
logic of types V ′, except with () replaced by, for arbitrary sets of formulas
∆:

∆ ` α ∧ β → α

∆ ` β ∧ α → α

P The proof is as for Theorem 41 except that any use of ≤2,3 can be
replaced by a use of one of the new axiom schemes. ]

R
[1] Bunder, M. W., “Lambda terms definable as combinators”, Theoretical Computer
Science, Vol. 169 (1996) 3–21.

[2] Bunder, M. W., “Intersection types for lambda-terms and combinators and
their logics”, Journal of the Interest Group in Pure and Applied Logics, Vol. 10 (2002)
357–378.

[3] Bunder, M. W., “A classification of intersection types”, Journal of Symbolic Logic,
Vol. 67 (2002) 353–368.

[4] Bunder, M. W., “The inhabitation problem for intersection types”, Preprint,
The University of Wollongong, 2003.

[5] Coppo, M., and Dezani, M. “A new type assignment for lambda terms”, Archiv
Math. Logik, Vol. 19 (1978) 139–156.

[6] Coppo, M., Dezani, M. and Sallé, P. “Functional characterization of some
semantic equalities inside λ-calculus”, Springer Lecture Notes in Computer Science,
Vol. 71 (1979) 133–146.

[7] Curry, H. B. and Feys, R. Combinatory Logic, Vol. 1, North Holland, Amsterdam
1958.

[8] Dezani, M. and Hindley, J. R., “Intersection types for combinatory logic”,
Theoretical Computer Science, Vol. 100 (1992) 303–324.

[9] Hindley, J. K. “Types with intersection, an introduction”, Formal Aspects of
Computing, Vol. 4 (1992) 470–486.

[10] Hindley, J. R. Basic Simple Type Theory, Cambridge University Press, 1997.

[11] Hindley, J. R. and Seldin, J. P. Introduction to Combinators and λ-calculus,
Cambridge University Press, Cambridge 1986.

[12] Kurata, T. and Takahashi, M. “Decidable properties of intersection type
systems” in Lecture Notes in Computer Science, Vol. 902,  1995, edited by M.
Dezani and G. Plotkin, 1995, 297–311.

[13] Routley, R. and Meyer, R. K. “The semantics of entailment II,” Journal of
Philosophical Logic, Vol. 1, (1972) 53–73.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2003 55

[14] Routley, R. and Meyer, R. K. “The semantics of entailment III”, Journal of
Philosophical Logic, Vol. 1 (1972) 420–441.

[15] Urzyczyn, P. “The emptiness problem for intersection types” Proceedings of Logic
in Computer Science, , 1994.

[16] Venneri, B., “Intersection types as logical formulae” Journal of Logic and
Computation, Vol.4 (1994) 109–124.

“Intersection Type Systems and Logics Related to B+”, Australasian Journal of Logic (1) 2003, 43–55

http://www.philosophy.unimelb.edu.au/ajl/2003
http://www.philosophy.unimelb.edu.au/ajl/


The Australasian Journal of Logic ( 1448-5052) disseminates articles that signifi-
cantly advance the study of logic, in its mathematical, philosohpical or computational
guises. The scope of the journal includes all areas of logic, both pure and applied to
topics in philosophy, mathematics, computation, linguistics and the other sciences.

Articles appearing in the journal have been carefully and critically refereed under the
responsibility of members of the Editorial Board. Only papers judged to be both sig-
nificant and excellent are accepted for publication.

The journal is freely available at the journal website at

http://www.philosophy.unimelb.edu.au/ajl/.

All issues of the journal are archived electronically at the journal website.

S Individuals may subscribe to the journal by sending an email, in-
cluding a full name, and email address and a postal address to the managing editor at
ajl-editors@unimelb.edu.au. Subscribers will receive email abstracts of accepted
papers to an address of their choice. For institutional subscription, please email the
managing editor at ajl-editors@unimelb.edu.au.

Complete published papers may be downloaded at the journal’s website at http:
//www.philosophy.unimelb.edu.au/ajl/. The journal currently publishes in pdf
format.

S The journal accepts submissions of papers electronically. To submit
an article for publication, send the LATEX source of a submission to a member of the
editorial board. For a current list of the editorial board, consult the website.

The copyright of each article remains with the author or authors of that article.

http://www.philosophy.unimelb.edu.au/ajl/
http://www.philosophy.unimelb.edu.au/ajl/
ajl-editors@unimelb.edu.au
ajl-editors@unimelb.edu.au
http://www.philosophy.unimelb.edu.au/ajl/
http://www.philosophy.unimelb.edu.au/ajl/

	Simple Typed Lambda Calculus
	Intersection Types
	B+ the -logic
	The Logic of TA
	Intermediate Type Systems
	The Logics of the Intermediate Systems

