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Abstract: This paper proves decidability of a range of weak relevant logics using de-
cision procedures based on the Routley-Meyer semantics. Logics are categorized as
-logics, for those proved decidable using a filtration method, and -logics, for those
proved decidable using a direct (unfiltered) method. Both of these methods are set
out as reductio methods, in the style of Hughes and Cresswell. We also examine some
extensions of the -logics where the method fails and infinite sequences of worlds can
be generated.

In Relevant Logics and their Rivals [12, pages 399–406], Richard Routley (as he
was then known) purported to have established the decidability of a range of
weak relevant logics. He first claimed to have proved decidability for the sys-
tem , on pp. 401-2, using a filtration method upon the Routley–Meyer seman-
tics, which yielded the finite model property for . After warning that the
method would by no means extend to all the systems with semantic postulates
given in Chapter 4 and 5 of [12], he extended the result to the postulate Raaa,
for the axiom A & (A → B) → B, the postulate Raa∗a, for A → ∼A → ∼A,
and also to the postulate, if Rabc then Rac∗b∗, for A → ∼B → .B → ∼A.
There are also a couple of less significant postulates given. Routley then exam-
ined the use of a second filtration, but realized its shortcomings in establishing
postulate 2 — if a ≤ b and Rbcd then Racd — for the finite model. He
briefly examined a third filtration, realized that it would not yield a decidabil-
ity result without deductive closures on the worlds of the finite models, and
hence suggested using operational semantics instead of the Routley–Meyer se-
mantics.
However, Routley had erred in two places in his first filtration. Fortunately

for those of us interested in weak relevant logics and Routley–Meyer-style se-
mantics, his second filtration can still be used and his results can be revived and
extended using the simplified semantics of Priest and Sylvan [10] and Restall
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[11], which has subsequently become available. The object of §3 of this paper
is to show how this is to be done. In the process, I do not want to detract from
what has otherwise been an outstanding volume, of which all of us in the field
make heavy use.
It must also be said that Fine had first proved the decidability of weak

relevant logics without A → B → .B → C → .A → C and A → B → .C →
A → .C → B in [6], pp. 365–8, using his own semantics which embraces both
theories and prime theories. The above postulate 2 simplifies to — (ii) if
t ≤ u then (t ·v) ≤ (u ·v) [6, page 348] — which enables the decidability proof
to go through without anything resembling the simplified semantics of Priest,
Sylvan and Restall.
Moreover, a different range of systems have been shown decidable using

proof-theory in Brady [3,4,5], viz. the contraction-less logics, ,  and ,
by using Gentzen systems based on the work of Dunn [1, pages 381–391] and
Giambrone [7]. This suggests that there may be a semantic method, based on
a Routley-Meyer semantics, for establishing the same result, which might then
extend to other systems. We will show this in §5 of the paper, indicating what
goes wrong with some of these extensions.

1 T L
We present axiomatizations for the main logics referred to in this paper: , ,
, , , , , , , , , , , ,  and , together
with their disjunctive rule extensions. We take as primitives: ∼, &, ∨, →, and
we consider the following axioms, rules and meta-rule, and the class of logics
constructed using them, in Figures 1 and 2.1 (Each of the subtracted axioms
and rules are redundant in the respective system.)
For any logic , let d be  + 1. For each of the listed logics  without

12,  = d, i. e., they have the same set of theorems. (See Slaney [13] and [14]
for this result.)

We distinguish two kinds of logics for the purposes of this paper : An -logic
is one of the following: d (or ), d (or ), d (or ), d, d, d, d,
d. These will used in §3 for filtrations and in §4 for the reductio method
based on these.
A -logic is one of the following : d (or ), d, d, d (or ), d,

d, d (or ), d, d, d (or ). These will be used in §5 for
the reductio method without filtrations. Since simplified semantics are used
throughout, disjunctive rules are always required.

1We use ‘’ to represent the logic , without the two -axioms, 16 and 17, but with the
other half of classicality, 5.
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1 A → A

2 A & B → A

3 A & B → B

4 (A → B) & (A → C) → .A → B & C

5 A → A ∨ B

6 B → A ∨ B

7 (A → C) & (B → C) → .A ∨ B → C

8 A & (B ∨ C) → (A & B) ∨ (A & C)
9 ∼∼A → A

10 A → ∼B → .B → ∼A

11 (A → B) & (B → C) → .A → C

12 A ∨ ∼A

13 A → ∼A → ∼A

14 (A → .A → B) → .A → B

15 A & (A → B) → B

16 A → B → .B → C → .A → C

17 A → B → .C → A → .C → B

18 A → .A → B → B

1 A,A → B ⇒ B

2 A,B ⇒ A & B

3 A → B, C → D ⇒ B → C → .A → D

4 A → ∼B ⇒ B → ∼A

5 ∼A, A ∨ B ⇒ B

1 If A ⇒ B then C ∨ A ⇒ C ∨ B

Figure 1: Axioms, Rules and Meta-Rule

2 T S S
Priest and Sylvan [10] introduced a simplified version of the Routley–Meyer
semantics for the logic + and then , the essential feature being the removal
of the defined ordering relation ‘≤’ for the reduced semantics and the use of
the following special truth-condition for evaluating entailments A → B at the
base world T , viz.

• I(A → B, T) = T iff, for all b ∈ K, if I(A,b) = T then I(B, b) = T .

The usual Routley–Meyer truth-condition applies forA → B for worlds a 6= T .
Then, Restall [11] extended this simplified semantics to a wide range of rel-

evant and other logics. However, he did not use the special truth-condition for
A → B, but instead added the semantic postulate, RTab ⇔ a = b, which sim-
plifies some of the other postulates, together with the corresponding sound-
ness and completeness arguments. For our purposes, it is Restall’s form of the
semantics that works best and so we set it out for our logics of interest. We
start with the logic d, which has the same theorems as .
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 1–9 + 1–4
  + 12
  + 5
  + 10 − 4
  + 12
  + 5
  + 11
  + 12
  + 13 − 12
  + 14 + 15
  + 5
  + 18
  + 16 + 17 − 3
  + 12
  + 5
  + 18 − 17

Figure 2: Systems

A  model structure (ms) consists of the concepts 〈T, K, R, ∗〉, where K is
a set of worlds, the base world T ∈ K, R is a 3-place relation on K, and ∗ is a
1-place function on K, subject to the semantic postulates: for a, b ∈ K:

1 a∗∗ = a.

2 RTab ⇔ a = b.

A -model is a ms with valuation v, which assigns a truth-value T or F to each
sentential variable for each world. Each valuation is uniquely extended to an
interpretation I by induction on formulae, as follows: for a ∈ K, sentential
variable p, and formulae A, B:

(i) I(p, a) = v(p, a).

(ii) I(∼A,a) = T iff I(A,a∗) = F.

(iii) I(A & B, a) = T iff I(A,a) = T and I(B, a) = T .

(iv) I(A ∨ B, a) = T iff I(A,a) = T or I(B, a) = T .

(v) I(A → B, a) = T iff, for all b, c ∈ K, if Rabc and I(A,b) = T then
I(B, c) = T .

A formula A is true in a -model iff I(A, T) = T , and A is valid in a ms iff A is
true in every -model on that ms. A is valid in the simplified semantics for  iff
A is valid in every ms.
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T 1 For formulae A, if A is a theorem of d (or ) then A is valid in
the simplified semantics for .
P The usual soundness theorem follows as in [12], but with 2 simpli-
fying the proof of the Entailment Lemma (Lemma 4.2 on page 302) for reduced
modelling. For 1, see Relevant Logics and their Rivals [12, pages 336-7], or
Priest and Sylvan [10, pages 220-1]. ]

T 2 For formulae A, if A is valid in the simplified semantics for 
then A is a theorem of d (or ).
P The completeness theorem is generally standard [12], but with two
essential differences. First, the canonical base world TB is constructed so that
each rule of d is closed in it, with help from 1. (This construction was used
in Brady [2, pages 252–256], with quantifiers.) Second, to prove RBTBab ⇔
a = b in the canonical model structure, Restall introduces (for +) [11, page
490], a copy of TB, called T ′

B, which has the same members as TB, but satisfies
the above equivalence for a, b ∈ KB. RBabc is then defined normally for a 6=
T ′

B. Then, in proving Ic(A → B, a) = T iff A → B ∈ a, for the canonical
interpretation Ic, we need to consider the special case, a = T ′

B. However, for ,
with negation, we also need a copy of T∗

B, viz. T∗′
B , so as to satisfy 1.2 RBT∗′

B ab

is just defined as RBT∗
Bab, T∗′

B and T∗
B being regarded as distinct elements of

KB. ]

We extend these soundness and completeness results to the -logics and -
logics, defined in §1. Figure 3 lists the semantic postulate corresponding to
each additional axiom and rule.

T 3 For formulae A, if A is a theorem of one of the -logics or -
logics L then A is valid in the simplified semantics for L.
P Restall [11, pages 484–6] showed soundness for 11, 14, 15, 16, 17
and 18. After introducing an extra semantic primitive, ‘≤’, with postulates
and valuation condition below, Restall [11, pages 506–7], showed soundness for
10, 12 and 13. Soundness for 5 follows easily. ‘≤’ is a 2-place relation on K,
satisfying the following: For a, b ∈ K, and sentential variables p,

13 a ≤ b ⇒ b∗ ≤ a∗

14 a ≤ b & Rbcd ⇒ Racd.3

 If a ≤ b and v(p, a) = T then v(p, b) = T .

The theorem, ‘if a ≤ b and I(A,a) = T then I(A,b) = T ’, then follows by
induction on formulae A [12, page 302].

2Such an addition as T∗′
B was used by Giambrone and Meyer [8, pages 11–12].

3Restall breaks this up into two cases: a = T and a 6= T , but this does not appear to be
needed here.
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A A  R C P
10 A → ∼B → .B → ∼A 3 Rabc ⇒ Rac∗b∗

11 (A → B) & (B → C) → .A → C 4 Rabc ⇒ ∃x ∈ K, Rabx & Raxc

12 A ∨ ∼A 5 T∗ ≤ T

13 A → ∼A → ∼A 6 (i) Raa∗a, for a 6= T ,
and (ii) T∗ ≤ T

14 (A → .A → B) → .A → B 7 Rabc ⇒ ∃x ∈ K, Rabx & Rxbc

15 A & (A → B) → B 8 Raaa

16 A → B → .B → C → .A → C 9 Rabz & Rzcd ⇒
∃x ∈ K, Racx & Rbxd

17 A → B → .C → A → .C → B 10 Rabz & Rzcd ⇒
∃x ∈ K, Rbcx & Raxd

18 A → .A → B → B 11 Rabc ⇒ Rbac

5 ∼A, A ∨ B ⇒ B 12 T ≤ T∗

[When 12 and 5 are included, replace 6 (ii)
and 12 by T = T∗ and simplify 6 to Raa∗a.]

Figure 3: Semantic Postulates Corresponding to Axioms and Rules

However, we only require this process for T∗ ≤ T and T ≤ T∗. In which
case, 13 is automatically satisfied, given 1, and 14 reduces to the two re-
spective forms, given 2:

14 T∗ ≤ T ⇒ RT∗aa

14 T ≤ T∗ & RT∗ab ⇒ a = b

So, in the event that T∗ ≤ T is required, i. e. for 12 and 13, we add:

15 RT∗aa

and the valuation condition:

1 If v(p, T∗) = T then v(p, T) = T , for all p

and, in the event that T ≤ T∗ is required, i. e. for 5, we add the postulate:

16 RT∗ab ⇒ a = b

and the valuation condition:

2 If v(p, T) = T then v(p, T∗) = T , for all p

though these are not required on their own, for the indicated logics. ]
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T 4 For formulae A, if A is valid in the simplified semantics for one
of the -logics or -logics L then A is a theorem of L.
P Completeness is somewhat more complicated because of the split def-
inition of the canonical relation RLabc, for the logics L. We also define a ≤ b,
for a, b ∈ KL, as a ⊆ b.
For the logics, d, d, d, d, d, d, d, d, d, d, d,

d, dand d, this is relatively straight-forward with postulates 3, 4,
6, 7, 8, 9 and 10 requiring additional checking when a = T ′

L, as in Restall
[11, pages 492–494, 507–8]. For 9 and 10, we also need to check b = T ′

L and
z = T ′

L, but b = TL and z = TL do the required work in each case. (Note that
8 is required for 7, but 15 is derivable from 14 anyway.) Also, we can see
that RLT∗′

L aa holds for logics with 12, since T∗
L ⊆ TL and RLTLaa. Further, for

logics with 12 and 5, we put T∗′
L = T ′

L since T∗ = T .
However, there is a special definition for RL for logics L containing 18.

We will assume, for the purposes of the logic d, that 10–15 and 5 are
included in L, as there is much interlinkage between the various axioms and
the rule in re-establishing the postulates. Also, for the purposes of d, we
will assume that 10 is included in L. We define RL as:

RLT ′
Lbc ⇔ b = c, RLaT ′

Lc ⇔ a = c, RLabT ′
L ⇔ a = b∗

RLabc is then defined normally for a 6= T ′
L, b 6= T ′

L and c 6= T ′
L. In checking

the postulates, 3 and 11 are fine, 8 and the unrestricted 6 use T∗′
L = T ′

L, 4
uses 3 and 8, 7 uses 6 and 8, and 9 and 10 both use 3 and 11.
In checking the proof of ‘Ic(A → B, a) = T iff A → B ∈ a’, we show that

A → B ∈ a iff, for all b, c ∈ KL, if RLabc and A ∈ b then B ∈ c. In the case
a 6= T ′

L, A → B ∈ T ′
L iff, for all b ∈ KL, if A ∈ b then B ∈ b, as shown in [10,11]

for +. For the case b = T ′
L, if A → B ∈ a, a = c, A ∈ T ′

L then B ∈ c, since
A → .A → B → B is a theorem of L and a is a TL − L-theory.4 The converse
direction is no problem since TL will always suffice for T ′

L. (Also see Restall [11,
page 485].) In case c = T ′

L, if A → B ∈ a, a = b∗, A ∈ b then B ∈ T ′
L, since

∼B → .A → B → ∼A is a theorem. ]

3 T F M
We followRelevant Logics and theirRivals [12, pages 399–403] in setting up Rout-
ley’s first filtration and show up the two defects in the argument. We then
move onto the second filtration, but employing the simplified semantics of §2
for the systems indicated. Generally, the filtration method finitizes the set of
worlds of a model by setting as equivalent worlds ones that evaluate a certain
finite set X of formulae the same way. This set X is generally the set of subfor-
mulae of a given formula under test, closed under the negation of unnegated
formulae. The idea here is to show that the logic concerned has the finite

4For the definition of a T − L-theory, see [12, page 306].
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model property, i. e. that each non-theorem can be falsified in a finite model.
This yields decidability for the logic by a standard argument [12, pages 401-2].
For an -logic L, we define an appropriate closure X of a formula A as the

set of all subformulae of A closed under the condition: if B is a member of
X with its principal connective not being a negation then ∼B is a member of
X. We consider a Routley-Meyer model 〈T,O, K, R, ∗,≤, v〉, where K is a set of
worlds, T ∈ O, O ⊆ K, R is a 3-place relation on K, ∗ is a 1-place function on K,
≤ is a 2-place relation on K, subject to the set of postulates below for the logic
L, for a, b ∈ K,

1 a ≤ a,

2 a ≤ b and Rbcd ⇒ Racd,

3 a ≤ b ⇒ b∗ ≤ a∗,

4 a = a∗∗,

5 a ∈ O, Rabc ⇒ b ≤ c,

6 (∃x ∈ O)Rxaa,

(plus any extra postulates appropriate to the -logic L) and v is a valuation
assigning T or F to sentential variables p at each world a ∈ K, subject to the
condition: for sentential variables p, if a ≤ b and v(p, a) = T then v(p, b) = T .
We define, for worlds a, b ∈ K and appropriate closure X, a =X b for

(∀B ∈ X)(I(B, a) = I(B, b)). We call such a and b X-equivalent. We note that
a =X b iff a∗ =X b∗. We defineX-equivalence classes ǎ(X) as {b ∈ K : a =X b},
generated by the element a. We call these classes X-worlds and form the set
Ǩ of such worlds, i. e. Ǩ(X) = {ǎ(X) : a ∈ K}. We will standardly leave off
‘(X)’ to simplify terminology. Further, Ǩ is finite, as each X-world represents a
valuation of the set of formulae in X, and so if X has n formulae then there are
at most 2n valuations of X and hence at most 2n members of Ǩ.
We go on to define a (finite) X-model M̌ in Ǩ which is Routley’s first filtra-

tion: 〈Ť , Ǒ, Ǩ, Ř, ∗̌, ≤̌, v̌〉. Ť is already given, ǎ∗̌ =df (a∗)̌, and Ǒ, Ř, ≤̌, and v̌

are given as follows:

• ǎ ∈ Ǒ iff (∀B ∈ X)I(B → B, a) = T ,

• Řǎb̌č iff (∀B, C ∈ X)(B → C ∈ X & I(B → C, a) = T & I(B, b) = T ⇒
I(C, c) = T),

• ǎ≤̌b̌ iff (∀B ∈ X)(I(B, a) = T ⇒ I(B, b) = T),

• v̌(p, ǎ) = T iff v(p, a) = T and p ∈ X.
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The first problem is that the definition of ǎ ∈ Ǒ does not seem independent
of the choice of the element a in ǎ. One could have a =X b, I(B → B, a) = T

and I(B → B, b) = F, for some B ∈ X such that B → B 6∈ X, since the formula
B can be evaluated at worlds outside of ǎ.
The second problem is in checking 5, we again seem to need B → B ∈ X,

when B ∈ X. We let B ∈ X and I(B, b) = T , and, since ǎ ∈ Ǒ, I(B → B, a) = T .
Since Řǎb̌č we would need B → B ∈ X to derive I(B, c) = T , as required for
b̌≤̌č.
One could try replacing the definition of ǎ ∈ Ǒ by (∀B → B ∈ X)I(B →

B, a) = T . This solves the first problem but 5 still does not follow. One could
additionally try putting (∀B ∈ X)(B → B ∈ X & I(B, a) = T ⇒ I(B, b) = T)

for ǎ≤̌b̌. This then solves the two problems but creates a new one for 2.
Clearly, we cannot add the condition ‘if B ∈ X then B → B ∈ X’ without losing
the finitude of X.
We could try to remove Ǒ by using reduced models, i. e. by putting Ǒ = Ť ,

but 5 is still a problem for the original definition of ≤̌ and 2 is still a prob-
lem for the revised definition of ≤̌. So, we consider the simplified semantics,
without Ǒ and ≤̌, but retaining the defintion of Ř. This does overcome the
problems with the initial postulates, and does provide finite modelling for such
systems as d and d, as set out in [12, pages 400–3], but does not cope with
any of the existential postulates, such as 4 and 7 of §2, which would yield
systems such as d and d.
So, we move on to the second filtration [12, pages 403-4], which is defined

as for the first filtration, but with the following definitions of Ǒ, Ř and ≤̌:

• ǎ ∈ Ǒ iff (∃a ∈ ǎ)a ∈ O,

• Rǎb̌č iff (∃a ∈ ǎ)(∃b ∈ b̌)(∃c ∈ č)Rabc,

• ǎ≤̌b̌ iff (∃a ∈ ǎ)(∃b ∈ b̌)a ≤ b.

However, as pointed out in [12, page 404], there is a problem with ensuring
that the two bs in 2: a ≤ b & Rbcd ⇒ Racd, are the same after the def-
initions of ǎ ≤ b̌ and Řb̌čď are applied. We overcome this problem with
the adoption of the simplified semantics, thus dropping ‘O’ and ‘≤’ (except
for logics containing 12 but not 5). Moreover, there is a similar problem
with the two postulates ‘Rabz & Rzcd ⇒ (∃x ∈ K)(Rbcx & Raxd)’ and
‘Rabz & Rzcd ⇒ (∃x ∈ K)(Racx & Rbxd)’ in ensuring that the two zs are
the same after the definitions of Řǎb̌ž and Řžčď have been applied. So, we
proceed to apply the second filtration to the -logics, d, d, d, d, d,
d, d and d, which do have simplified semantics and do not use these
two postulates.
There is another similar problem for the postulate 2 of §2, viz. RTab ⇔

a = b, in that if ŘŤ ǎb̌ is assumed then, for some a, b ∈ K, RTab may not hold
for the specific base world T in Ť . We overcome this by distinguishing in Ǩ
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between Ť and Ṫ , where Ť is {T } and Ṫ is {b ∈ K : T =X b}− {T }. We also add Ť ∗̌

which is {T∗}, to be distinguished in Ǩ from Ṫ ∗̌ which is {b ∈ K : T∗ =X b}−{T∗}.
[If Ṫ is null, then delete Ṫ and Ṫ ∗̌ throughout the following argument.]
The base world in the second filtration is then taken to be Ť . We put Ť ∗̌∗̌

as Ť , and Ṫ ∗̌∗̌ as Ṫ . We will continue to use ǎ to represent elements of Ǩ and
a ∈ ǎ to represent elements of K which are members of ǎ. For the definitions
of ŘŤ ǎb̌, ǎ≤̌b̌ and v̌(p, ǎ), we let the forms a ∈ ǎ, etc. hold when T ∈ Ť and
T ∈ Ť ∗̌, and for Ṫ and Ṫ ∗̌ in accordance with their set-theoretic memberships.

L 1 Whenever b ∈ ǎ, b∗ ∈ ǎ∗̌, for any element ǎ in Ǩ.
P For ǎ, which is neither Ť , Ṫ , Ť ∗̌, nor Ṫ ∗̌, a =X b and hence a∗ =X b∗.
Then b∗ ∈ a∗̌ and, since ǎ∗̌ =df a∗̌, b∗ ∈ ǎ∗̌. If b ∈ Ť then b = T , b∗ = T∗ and
b∗ ∈ Ť ∗̌. If b ∈ Ṫ then b =X T and b 6= T . Hence b∗ =X T∗ and b 6= T∗, and
thus b∗ ∈ Ṫ ∗̌. If b ∈ Ť ∗̌ then b = T∗, b∗ = T , b∗ ∈ Ť and b∗ ∈ Ť ∗̌∗̌. If b ∈ Ṫ ∗̌

then b =X T∗ and b 6= T∗, b∗ =X T and b∗ 6= T , b∗ ∈ Ṫ and b∗ ∈ Ṫ ∗̌∗̌. ]

T 5 Given a model M, 〈T, K, R, ∗,≤, v〉, of the simplified semantics
of one of the -logics L, the second filtration X-model M̌: 〈Ť , Ǩ, Ř, ∗̌, ≤̌, v̌〉, as
defined above and with appropriate semantic postulates for L, is also a model
of L. (‘≤̌’ is included only for logics with 12 but not 5.)
P We check the semantic postulates, 1–8, 11 and 12, listed in §2 for
the logics L. For the most part, [12, pages 400–3], is followed.
1. For ǎ, which is neither Ť , Ṫ , Ť ∗̌, nor Ṫ ∗̌, ǎ∗̌∗̌ = (a∗∗)̌ = ǎ. The cases for Ť ,
Ṫ , Ť ∗̌, and Ṫ ∗̌are clear from the above definitions.
2. Let ŘŤ ǎb̌. Then, by definition, RTab, for some a ∈ ǎ and b ∈ b̌, and
hence a = b. Then ǎ = b̌. Conversely, let ǎ = b̌. Since RTaa, ŘŤ ǎǎ and
hence ŘŤ ǎb̌.
3. For ǎ, b̌ and č, which are neither Ť , Ṫ , Ť ∗̌, nor Ṫ ∗̌, let Řǎb̌č. Then Rabc, for
some a ∈ ǎ, b ∈ b̌, c ∈ č, and hence Rac∗b∗. Then Řǎ(c∗)̌(b∗)̌ and Řǎč∗̌b̌∗̌.
By Lemma 1, this result extends to the four additional cases.
4. Let Řǎb̌č. Then Rabc, for some a ∈ ǎ, b ∈ b̌, c ∈ č and hence, for some
x ∈ K, Rabx and Raxc. Let x̌ be the member of Ǩ such that x ∈ x̌. Then Řǎb̌x̌

and Řǎx̌č for this x̌.
5. Since T∗ ≤ T , Ť ∗̌≤̌Ť , by definition of ‘≤̌’.
6. For part (i), let ǎ 6= Ť , then any such element a of K, such that a ∈ ǎ, is
not identical with T . Hence, for this a, Raa∗a and, by Lemma 1, Řǎǎ∗̌ǎ. Part
(ii) is clear from 5, when required.
7. Similar to 4.
8. Let ǎ ∈ Ǩ. For any a ∈ ǎ, Raaa and hence Řǎǎǎ.
11. Let Řǎb̌č. Then Rabc, for some a ∈ ǎ, b ∈ b̌, c ∈ č, and hence Rbac and
Rb̌ǎč.
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12. We just consider Ť = Ť ∗̌, in view of the logics L. Since T = T∗, {T } = {T∗}
and Ť = Ť ∗̌. For logics with 12 but not 5, we check the additional postulate,
15, and the valuation condition 1.
15. Since RT∗aa, by definition, RT ∗̌ǎǎ.
1. Let v̌(p, Ť ∗̌) = T and Ť ∗̌≤̌Ť . Then v(p, T∗) = T , p ∈ X and T∗ ≤ T .
Hence v(p, T) = T and v̌(p, Ť) = T . ]

Let Ǐ(A, ǎ) be the interpretation which extends the valuation v̌(p, ǎ) to all
formulae A in accordance with the semantics.

C 1 For logics with 12 but not 5, with 15 and 1, for all formu-
lae A, if Ǐ(A, Ť ∗̌) = T then Ǐ(A, Ť) = T .

The following theorem shows that the second filtration interpretation Ǐ(A, ǎ)

over members of X takes the same value as that of all of the interpretations
I(A,a), for a ∈ ǎ.

T 6 For the modelM and the X-model M̌ of Theorem 5, for A ∈ X,
Ǐ(A, ǎ) = I(A,a), for each a ∈ ǎ.
P We check this result inductively on formulae in X, for a ∈ ǎ. The
argument is mostly as in [12, page 401].
p: v̌(p, ǎ) = T iff v(p, a) = T , for p ∈ X.
∼: Ǐ(∼A, ǎ) = T iff Ǐ(A, ǎ∗̌) = F, iff I(A,a∗) = F, by the induction hypothesis,
iff I(∼A,a) = T . We use Lemma 1 to ensure that a∗ ∈ ǎ∗̌ for the given a ∈ ǎ.
&, ∨: Straightforward.→: Let Ǐ(A → B, ǎ) = T . Then, for all b̌, č ∈ Ǩ, if Řǎb̌č and Ǐ(A, b̌) = T

then Ǐ(B, č) = T . Let Rabc and I(A,b) = T , for any a ∈ ǎ and b, c ∈ K.
Then, by definition, Řǎb̌č, where b ∈ b̌, c ∈ č, and, by induction hypothesis,
Ǐ(A, b̌) = T and hence Ǐ(B, č) = T and I(B, c) = T . So, I(A → B, a) = T .
Let Ǐ(A → B, ǎ) = F. Then, for some b̌, č ∈ Ǩ, Řǎb̌č, Ǐ(A, b̌) = T and
Ǐ(B, č) = F. By definition, Rabc, for some a ∈ ǎ, b ∈ b̌, c ∈ č, and, by
induction hypothesis, I(A,b) = T and I(B, c) = F. Hence, I(A → B, a) = F

for this a ∈ ǎ. However, since A → B ∈ X, I(A → B, a) = F for all a ∈ ǎ. ]

The corollary shows that the splitting of the original X-worlds Ť and Ṫ does
not affect their interpretations of formulae in X.

C 2 For A ∈ X, Ǐ(A, Ť) = Ǐ(A, Ṫ) and Ǐ(A, Ť ∗̌) = Ǐ(A, Ṫ ∗̌), given
that Ṫ and Ṫ ∗̌ are both non-empty and are thus proper elements of Ǩ.
P By Theorem 6, Ǐ(A, Ť) = I(A, T). There is an element a ∈ Ṫ such
that a =X T and a 6= T , and thus I(A, T) = I(A,a), and, by Theorem 6,
Ǐ(A, Ṫ) = I(A,a). So, Ǐ(A, Ť) = Ǐ(A, Ṫ). Ǐ(A, Ť ∗̌) = Ǐ(A, Ṫ ∗̌) follows similarly,
since, by Lemma 1, a∗ ∈ Ṫ ∗̌. ]
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T 7 Each -logic d, d, d, d, d, d, dand dis decid-
able.
P Each of the logics have the finite model property and are hence decid-
able. To show this, let A be a non-theorem of one of the -logics L. Then, by
Theorems 2 and 4, A is invalid in the simplified semantics for L and I(A, T) =

F, for some model M. Let X be the appropriate closure of the formula A. By
Theorems 5 and 6, there is a second filtration X-model M̌ such that Ǐ(A, Ť) =

F, since A ∈ X. So, A is falsified in the model M̌, which is finite since the set Ǩ
of X-worlds is finite. Decidability then follows [12, pages 401–2]. ]

The next theorem tightens this decidability argument further by showing that
the theoremhood or non-theoremhood of a formula A in an -logic L can be
determined just by its X-models.

T 8 For a given formula A, A is a theorem of an -logic L iff A is true
in all the X-models of L, where X is the appropriate closure of A.
P If A is a theorem of an -logic L then A must be true in any of the
X-models, as they are models by Theorem 5 and soundness was shown by The-
orems 1 and 3. IfA is a non-theorem of L then, by the argument in the proof of
Theorem 7, Ǐ(A, Ť) = F in an X-model M̌, where X is the appropriate closure
of the formula A. ]

The finite size of the X-models is determinable in terms of features of the
formula A under test. The size of X is no more than twice the number of
subformulae of A, taking into account the closure condition, and the num-
ber of X-worlds is limited to 2n, where n is the number of formulae in X. In
fact, starting with a formula A, we can identify each possible “X-world” by
its set of interpretations (T or F) on the members of X, then choose Ť and
Ť ∗̌ (and Ṫ and Ṫ ∗̌) and define all the relation Ř and function ∗̌ (and also ≤̌, if
necessary) on them to determine all the “X-models”. These “X-models” and
“X-worlds” within them are then pared down if semantic postulates or valua-
tion or interpretation conditions fail, producing X-models that are appropriate
for the -logic L. Thus, all the possible X-models for L can be constructed
for the formula A, which, given Theorem 8, can then be shown to be invalid,
if Ǐ(A, Ť) = F for some X-model, or valid, if Ǐ(A, Ť) = T for all X-models.
Though a decision procedure, this is very tedious and so we adapt this to the
reductio method, commonly used in other areas of logic such as modal logic.

4 T E R M
In the R M, we start with the formula A under test being as-
signed F at Ť , and only construct what parts of the X-model(s) of the simplified
semantics that are needed to try to falsify it. If an X-model can be determined,
consistent with the semantic postulates and valuation and interpretation con-
ditions of the -logic L, A is invalid and hence a non-theorem of L. If no such
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X-models can be found, and this can only be registered in the derivation of
contradictions in each of an exhaustive set of X-model attempts to falsify A,
then A is valid in all X-models and is hence a theorem of L.
We follow Hughes and Cresswell’s reductio procedure for the modal logic

 [9, pages 82-96] in setting out our reductio procedures for the -logics L, but
we need to include a rule for ∗-worlds and a rule for identifying worlds. We
also need to distinguish between the two worlds b and c when Rabc holds, as
they behave differently. We also need to add some further rules to ensure that
the various semantic postulates for the logics L apply.
We set out the rules for the reductio procedure for our -logics L, as fol-

lows: (Rules 1–6 are common to all logics L, whilst rule 7 is special to any of the
particular logics L stronger than .) (For simplicity, we drop the ‘̌ ’-notation.)
1. Put the formula A under test in a rectangle, labelled with world T , and put
the truth-value F under its main connective.
We continue to use rectangles around members of X, generated fromA and

taking truth-values T or F (put under the main connectives), and we append to
each rectangle a world label. In fact, when we refer to worlds in the sequel
we will assume an associated rectangle containing some members of X with
truth-values.
2. We apply the usual truth-table rules to the connectives &, with T under
it, and ∨, with F under it, to get definite values for the respective conjuncts
and disjuncts. We continue to apply these truth-table rules to & and ∨, where
applicable, in any of the subsequent worlds.
3. For each un-starred world a, we introduce a ∗-world a∗ so that if a formula
∼B takes T (F) in world a then we put B with value F (T ) in a∗, and if a formula B

takes T (F) in world a and ∼B ∈ X then we put ∼B with F (T ) in a∗. Whether a∗

is a new world or not will depend on rule 5 and, in the case of T and T∗, rule 7
or 7. (Note however that, for all logics L, a∗∗ = a, and that we constructed
a∗ so that all the above assignments still apply when applied from a∗ into a, as
well as applying from a into a∗.)
4. In a world a, if there is an ‘→’-formula taking F then there must be worlds
b and c, where we put the antecedent of the ‘→’, with a T under it, into the
rectangle for b, and we put the consequent of the ‘→’, with an F under it, into
the rectangle for c. We pick a point on the outside of the rectangle for a, draw
arrows from this point to the rectangles for b and for c, and draw a line (slash)
through the stem of the arrow towards b, indicating that b is to be treated
differently from c in relation to both this and the next clause. We call this an
R-relation between a, b and c, or just Rabc. We use a different starting point
to draw such arrows for each ‘→’-formula taking F in a. Whether either or
both of b and c are new worlds will depend on rule 5. (The rule does not have
to be applied if the requisite worlds b and c already exist with the respective
valuations.)
4. In a world a, if there is an ‘→’-formula taking T , then for each existing
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R-relationship between a and worlds b and c, shown by arrows from a to b

with a slash and from a to c without a slash, both from the same point on a, if
the antecedent of the ‘→’-formula has a T under it in the rectangle for b, then
we put the consequent of the ‘→’, with a T under it, into the rectangle for c.
4. Since the postulate RTab ⇔ a = b is common to all logics L, we in-
troduce the single world a (with the two arrows from the T -rectangle to the
a-rectangle) when evaluating an ‘→’-formula, with an F under it, in world T ,
putting both the antecedent and consequent of the ‘→’-formula into a, with
appropriate values. Whether a is a new world will depend on rule 5. (The rule
does not have to be applied if the requisite world a already exists with the re-
spective valuations.) Further, for every world b, including T , RTbb holds and
so, when evaluating an ‘→’-formula, with T under it, we draw in the arrows so
that whenever the antecedent of the ‘→’-formula takes T in b the consequent
takes T in b.
5. Any two worlds with the same value assignments for all the members of
X must be identified. This means that the same rectangles are used for both
these worlds and thus the same ∗- and R-relationships hold for these worlds.
However, there are exceptions for T and T∗. All the worlds having the same
values over X as for T are put identical to Ṫ , and all the worlds having the
same values over X as for T∗ are put identical to Ṫ∗. Moreover, one can get to
situations where there are no further distinct X-worlds and in the application
of rule 4 or even rule 3 one is left to consider all the possible identifications
between the worlds needed for these rules and the existing worlds.
5. For the purpose of trying to establish a consistent X-model, we may choose
to make an identification between worlds so that there is a consistent assign-
ment of values to the formulae in the identified world. If this indeed yields
an X-model, this will result in a restricted form of the X-model one is working
with. We will call this a restricted X-model. If a contradiction in another world
is derived from this identification then this contradiction only applies to this
particular identification and other identifications would have to be tried to see
whether X-models or contradictions result.
6. In applying the usual truth-table rules to the connectives &, with F un-
der it, and ∨, with T under it, we get three different value combinations for
the respective conjuncts and disjuncts. These yield what we call alternative
X-models. Whilst any of these alternatives would suffice as an X-model, con-
tradictions would need to be established in all three to produce a general con-
tradiction for the procedure at this point.

Rules 1–6 apply for the logic . For stronger logics L, we now add special
rules applicable for the particular logic L we are dealing with. We examine the
various semantic postulates of §2 in turn. Note that different starting points
are used for each pair of arrows representing an R-relation, drawn from any
single rectangle.
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7. For 3. Rabc ⇒ Rac∗b∗, we add the R-relation Rac∗b∗ to each existing
R-relation Rabc, inserting formulae and values according to rule 4. We do
not need to re-apply this rule to Rac∗b∗ as Rab∗∗c∗∗ already holds.
7. For 4. Rabc ⇒ x ∈ K, Rabx and Raxc, we add a world x and the R-
relations Rabx and Raxc to each existing R-relation Rabc. We insert formulae
and values according to rule 4 for both Rabx and Raxc. (The rule does not
have to be applied if the requisite world x already exists with the respective
R-relations.)
Realising that this process could run on until all X-worlds are exhausted, I

would suggest identifying x with b, if possible, in accordance with rule 5. For
then 7 need not be re-applied to Rabb.
7. For 5. T∗ ≤ T , we introduce the special ≤-relationship, indicated by a
single arrow from T∗ to T , in which every formula taking T at world T∗ is given
the value T in world T and every formula taking F at T∗ is given the value F at T .
7. For 6. Raa∗a, we add this R-relation for each world a other than T and
apply rule 4. T∗ ≤ T is then added as for rule 7. If T = T∗ applies, then
identify these worlds as well. By rule 5, this will imply the identification of Ṫ
and Ṫ∗, as formulae would have the same values in Ṫ and Ṫ∗.
7. For 7. Rabc ⇒ (∃x ∈ K)Rabx & Rxbc, we proceed in a similar manner to
rule 7, but I suggest identifying x with a, for then 7 need not be re-applied
to Raba.
7. For 8, Raaa, we add this R-relation for each world a and apply rule 4.
7. For 11. Rabc ⇒ Rbac, we proceed in a similar manner to rule 7, and we
do not need to re-apply this rule to Rbac.
7. For 12. T = T∗, we identify these worlds. As for rule 7, Ṫ and Ṫ∗ are also
identified. (We note that T ≤ T∗ does not arise for the logics L.)

The following theorem states the relationship between the reductio method
and theoremhood for the -logics L.

T 9 A formula A is a theorem of an -logic L if a contradiction is
obtained in each of an exhaustive set of derived X-models for L that assign
the value F to A at world Ť . A is a non-theorem of the logic L if a consistent
X-model for L is obtained which assigns the value F to A at world Ť .
P Clearly, if a contradiction is obtained in each of an exhaustive set of
derived X-models for L that assign the value F to A at world Ť then there are
no consistent such X-models for A and Ǐ(A, Ť) = T for all X-models of L.
Then, by Theorem 8, A is a theorem of L. In the process of exhausting a set
of derived X-models for L one must include all alternative X-models under rule
6 and all restricted X-models under rules 5 and 5. On the other hand, if a
consistent X-model for L is obtained which assigns the value F to A at world
Ť then Ǐ(A, Ť) = F for this X-model and, by Theorem 8, A is a non-theorem
of L. ]
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5 T R M  C- L
We proceed to develop a similar reductio method for the contraction-less log-
ics d, d, d and d, and, except for d, systems obtained by the ad-
dition of 12. A ∨ A (add ‘’ to name, prior to ‘d’) and systems obtained by
the addition of both 12 and 5. ∼A,A ∨ B ⇒ B (add ‘’ to name, prior to ‘d’).
These are called the -logics in §2. As indicated in §3, the first and second fil-
trations will not work for the (new) axioms 16 and 17 of , and so, we need
another approach. (Recall that  = d,  = d,  = d and  = d.
We will drop the ‘d’ when naming these systems for simplicity.)
We will not use a filtration method and tackle the semantics directly. Since

 and  have already been treated in §4, we start by focussing on . If we
consider the two semantic postulates for 16 and 17 of , viz.

9 Rabz & Rzcd ⇒ ∃x ∈ K, Racx & Rbxd, and

10 Rabz & Rzcd ⇒ ∃x ∈ K, Rbcx & Raxd

there seems to be a limit to the number of re-applications of these postulates if
the introduced worlds x are new on each occasion and there are no postulates,
further than those for , to concern us, at least for the moment. In order
to apply these postulates there must be two R-relations of the form Rabz and
Rzcd, and the introduced x cannot play the role of the z as they stand, which
means that we have to look around at our original set of R-relations for other
worlds for z to equal. This means that z must ultimately come from the finite
set of worlds and R-relations that we would already have from the reductio
method to this point and, if we insist that the introduced worlds are all new,
these two postulates will not have the propensity to generate an infinite num-
ber of worlds. We set this argument out more fully below.
We will continue to use the simplified semantics as it will give a simpler and

more straight-forward decision procedure. Assuming the introduction of such
new worlds for the logic , we set out the rules for the reductio procedure,
much as in §4:

1. Put the formula A under test in a rectangle, labelled with world T , and put
the truth-value F under its main connective.
2. We apply the usual truth-table rules, in this and subsequent worlds, to the
connectives &, with T under it, and ∨, with F under it.
3. For each un-starred world a, we introduce a ∗-world a∗ so that if a formula
∼B takes T (F) in world a then we put B with value F (T ) in a∗, and if a formula
B takes T (F) in world a then we put ∼B with F (T ) in a∗. a∗ is to be a new
world, unless there is already a world with all these properties. (Note as before
that a∗∗ = a.)
4. In a world a, if there is an ‘→’-formula taking F then there must be worlds
b and c, where we put the antecedent of the ‘→’-formula, with a T under it,
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into the rectangle for b, and we put the consequent of the ‘→’, with an F under
it, into the rectangle for c. As before, we draw arrows from a point on a to the
rectangles for b and for c, with a slash through the arrow towards b. We call
this an R-relation between a, b and c, or just Rabc. b and c are both taken to
be new worlds, except as for rule 4 below. These worlds are new with respect
to existing worlds and their ∗-worlds. (The rule is not applied if the requisite
worlds b and c already exist with the respective valuations.)
4. In a world a, if there is an ‘→’-formula taking T then, for each existing
R-relationship between a and worlds b and c, shown by arrows from a to b

with a slash and from a to c without a slash, both from the same point on a, if
the antecedent of the ‘→’-formula has a T under it in the rectangle for b, then
we put the consequent of the ‘→’, with a T under it, into the rectangle for c.
4. Since, for the simplified semantics, RTab ⇔ a = b, we introduce the
single world a (with the two arrows from the T -rectangle to the a-rectangle)
when evaluating an ‘→’-formula, with an F under it, in world T , putting both
the antecedent and consequent of the ‘→’-formula into a, with appropriate
values. Similarly to 4, the world a is new, unless such a world already exists.
Further, for every world b, including T , RTbb holds and so, when evaluating
an ‘→’-formula, with T under it, we draw in the arrows so that whenever the
antecedent of the ‘→’-formula takes T in b the consequent takes T in b.
6. In applying the usual truth-table rules to the connectives &, with F under
it, and ∨, with T under it, we get three different value combinations for the
respective conjuncts and disjuncts. These yield what we call alternative models.
7. We add the R-relation Rac∗b∗ to each existing R-relation Rabc, inserting
formulae and values according to rule 4.
7. For each existing pair of R-relations Rabz and Rzcd, we add the R-relations
Racx and Rbxd, and Rbcy and Rayd, where both worlds x and y are new
(i. e. new to existing worlds and their ∗-worlds), inserting formulae and values
according to rule 4. This rule is not applied when such x or y already exist
with the requisite R-relations.

For the purposes of comparing this reductio procedure with one based pre-
cisely on the simplified semantics for , we consider, in the proof below, the
addition of the following rule:

5. We can identify worlds a∗, introduced in rule 3, with any existing world, as
we can for the worlds b and c, introduced in rule 4, the world a, introduced
in rule 4, and also the worlds x and y, introduced in rule 7, whether such an
existing world initially had the requisite properties or not.

We now state the relationship between the above reductio method and the-
oremhood for , the proof of which involves a general argument concerning
the use of new worlds.

“Semantic Decision Procedures for Some Relevant Logics”, Australasian Journal of Logic (1) 2003, 4–27

http://www.philosophy.unimelb.edu.au/ajl/2003
http://ajl.unimelb.edu.au


http://www.philosophy.unimelb.edu.au/ajl/2003 21

T 10 A formula A is a theorem of  if a contradiction is obtained
in each of an exhaustive set of derived models that assign the value F to A at
world T . A is a non-theorem of  if a consistent model is obtained which
assigns the value F to A at world T .
P If a consistent model is obtained which assigns the value F to A at
world T then I(A, T) = F for this model and A is invalid in the simplified
semantics for . By Theorem 3 of §2, A is a non-theorem of . (Note that
 = d.)
Let a contradiction be obtained in each of an exhaustive set of derived

models that assign the value F to A at world T . These contradictions would
exhaust a set of alternative models, but would be based on the above rules 3,
4, 4 and 7, where new worlds were chosen for a∗, b, c, a, x and y. If we
were to add rule 5 and allow identifications of these worlds with pre-existing
worlds then the argument to the contradiction(s) would still apply as there
would be no changes to the existing assignments of values in the now identified
worlds. Indeed, the identifications may induce further contradictions. There
may also be further applications of rule 7 due to the identifications, but this is
not going to remove any derived contradictions. Also, any contradiction based
on the lack of application of the rules 3, 4, 4 and 7, due to the presence
of pre-existing worlds with the requisite properties, would still apply if such
rules were nevertheless applied to introduce new worlds or other worlds in
conjunction with rule 5. Thus, we have established the contradiction(s) within
the simplified semantics for , and hence there can be no consistent models
for A such that I(A, T) = F. So, I(A, T) = T for all models and A is valid in
the simplified semantics for . Hence, by Theorem 4 of §2, A is a theorem
of . ]

We now proceed with the decidability argument based on the reductio
method for .

T 11  is decidable, using the above reductio method.
P The reductio method for  builds up a set of worlds, starting with
T, existentially introducing new worlds using the rules 3, 4, 4 and 7, the
latter three with new R-relations. We also introduce new R-relations using the
rules 4, 4 and 7. We examine the various types of world and R-relation in-
troduction. Rules 3 and most of 4 are formula-based, in that the presence of a
formula induces the rule, whilst rule 7 and the second part of 4 (4–2) involv-
ing the R-relation RTbb are not, in that the rule applies to any existing world or
when an R-relation or certain configuration of R-relations occurs. Rules 3 and
7 are idempotent, i. e. the original world or R-relation is reached after two ap-
plications of the respective rule. The rule 4–2 applies only to the pre-existing
worlds b.
So, the rules 3, 4– and 7 are either formula-based or idempotent or

rely on pre-existing worlds. (We also use this terminology for the associated
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R-relations.) A reductio system, all of whose rules are of one of these three
types, would be decidable as only finitely many worlds could be generated, the
number of which would be dependent upon the number of subformulae in the
formula under test, and so the number of generated R-relations would also be
finite.
The only rule that is likely to cause trouble as far as decidability is con-

cerned is rule 7, as it may be capable of generating, through successive appli-
cations, an infinite sequence of worlds. We examine the possibilities for this.
First consider the interaction of rule 4-2, which yields RTaa. Let this

supply one of the two R-relations, Rabz and Rzcd. If RTaa and Racd then
RTcx and Raxd, for some x, and Racy and RTyd, for some y. We do not apply
rule 7 here as can be seen by putting x = c and y = d. Let us consider RabT

and RTcc. The only way RabT can be introduced is by rule 4-2, in which case,
a = b = T and this becomes an instance of the first case. Clearly, RabT is not
formula-based. The problem with introducing RabT using rule 7 with ‘T ’ in
the d-position is that ultimately one must start with RTTT and RTTT , which
is also an instance of the first case above. If we try to derive RaT∗b∗ using
rule 7, one must start with something of the same form, which is again not
formula-based. As a result we can assume that both the Rabz and the Rzcd are
generated by rule 4 and/or rule 7. Rule 7 does not have a significant impact
due to its idempotence. Consider an application of rule 7 in the forms, Rabz

and Rzcd ⇒ Racx and Rbxd, for some world x; and Rabz and Rzcd ⇒ Rbcy

and Rayd, for some world y. Since x and y are new, there is no immediate
generation of further worlds by application of rule 7. Also, the R-relations
that start such applications are all formula-based and so are finite in number.
Since each world introduced by rule 4 is new, we would have finite strings of
these R-relations all linked together like Rabz and Rzcd are, or like Rabz and
Rbcd, depending on the shape of the formulae involved. Other than the link
z, the other worlds are all different, and when rule 7 is applied this link is
replaced by other linking worlds x and y.
We consider a string of linked formula-based R-relations of length n, linked

so that rule 7 can apply between successive R-relations. We assume that a
finite number of worlds are generated by an exhaustive set of applications of
rule 7 to this string. We then add another linked formula-based R-relation,
Rdef, to the end of the string, making it a string of length n+1, and show that
there are only finitely many extra worlds introduced by exhaustive applications
of rule 7.
Consider R-relations of the type Rayd and Rbxd, obtained after any (finite)

number of applications of 7 to the initial string of length n, where the ‘x’ and
‘y’ are worlds introduced by the last such application of 7 and ‘a’ and ‘b’ can
either be worlds from a formula-based R-relation Rabz or introduced by 7 like
the ‘x’ or the ‘y’ worlds but earlier. The R-relations Rayd and Rbxd are the
only types that can interact with Rdef using rule 7. So, in applying 7 here,
we obtain Raex ′ and Ryx ′f, Ryey ′ and Ray ′f, Rbex ′′ and Rxx ′′f, and Rxey ′′
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and Rby ′′f, where x ′, y ′, x ′′ and y ′′ are all new. To take this further, each of
the worlds a, b, x and y in the first positions may link up with an R-relation
with these worlds in third position, such an R-relation being obtained from a
number of applications of 7 to the initial string of length n. Such worlds a,
b, x and y would have been introduced by an application of 7, involving for
example something of form Rx̀cx for the ‘x’, where ‘x̀’ and ‘c’ are worlds from a
formula-based R-relation or introduced earlier (than ‘x’) by 7. Applying 7 to
Rx̀cx and Rxey ′′ yields Rx̀ex ′′′ and Rcx ′′′y ′′, and Rcey ′′′ and Rx̀y ′′′y ′′, for new
x ′′′ and y ′′′. There may be other subsequent occurrences of such forms Rx̀cx

obtained by subsequent applications of 7, but the same structure applies. One
can again take this further by linking up with the worlds x̀ and c. What is
apparent however is that on each such linkage the worlds are introduced earlier
and earlier until, by successive application, there is no such linkage at all due
to the worlds being part of a formula-based R-relation. So the whole process
is finite, introducing only finitely many new worlds and R-relations. Note that
there is no generation of further worlds by linking any of the newly introduced
worlds x ′, y ′, x ′′, y ′′, x ′′′, y ′′′, etc. as they cannot appear in first position
without an R-relation of form Rfgh. Also note that application of 7 would
just give a ∗-version of this whole process.
So, by an induction argument, only finitely many worlds can be introduced

by rule 7 from any string of linked formula-based R-relations of any finite
length. This addresses our only remaining concern and thus  is decidable,
using the reductio method. ]

C 3  and  are decidable.
P The reductio method for  is obtained by removing rule 7 from
that for  and the reductio method for  is obtained by removing rule 7
from that for . Hence  and  are both decidable by these methods as,
with the absence of 7, there is no impediment to the finiteness of the set of
introduced worlds, as mentioned in the above proof. ]

We now extend the decidability argument for  to  and then to the re-
maining -logics.

T 12  is decidable.
P We first simplify the formulae that we need to consider so that the
proof can go through. As shown by Slaney [13], it suffices to consider just
entailments of form A → B when determining theorems of , due to the
primeness of theorems, viz. ` A ∨ B iff ` A or ` B, and the break up of
negated entailments, viz. ` ∼(A → B) iff ` A and ` ∼B. So, for the reductio
method, we do not have to consider negated entailments being true at world T

nor entailments false at T∗, and so the formula-based R-relation RT∗ab, and its
equivalents RaT∗b and Rab∗T (see rule 7 below), would never arise. However,
RT∗TT∗ can be derived, as can be seen from rule 7 below.
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With the addition of the semantic postulate 11. Rabc ⇒ Rbac, we add
the following rule to those in the reductio method for :
7. We add the R-relation Rbac to each existing R-relation Rabc, inserting
formulae and values according to rule 4.
As for rule 7, this rule is idempotent. However, unlike 7 which is fairly
harmless, rule 7 leads to some complications which will need to be examined.
In conjunction with 7, 7 will allow the introduced worlds x and y to be
positioned in such a way as to allow 7 to be re-applied with x and y as links.
Also, given 4, rule 7 will yield RaTa, which with 7 will generate an infinite
number of worlds, as we will shortly see for d. However, in this case, 7 will
prevent that from happening. Further, using 7 and 7, we get Raa∗T∗, which
also needs examination.
What we will show here is that there are no more new worlds introduced

by the addition of rule 7. New worlds can only be generated in conjunction
with 7 where, given Rabz and Rzcd, we add Racx and Rbxd, for some world
x, and Rbcy and Rayd, for some world y. We assume that 7 is applied before
7, wherever possible, as a matter of procedure. We address the three above-
mentioned concerns in turn.
(i) We expand the conclusions of 7 by using 7, as follows: Racx and Rxbd,
Rcax and Rxbd, Rbcy and Ryad, Rcby and Ryad. To each of these forms, we
can re-apply 7, as follows: Rabz and Rczd, Rcby and Rayd, Rcby and Rayd,
Rabz and Rczd, Rbaz and Rczd, Rcax and Rbxd, Rcax and Rbxd, Rbaz and
Rczd. We fill in the variable places in accordance with existing R-relations,
taking into account applications of 7 in the process. So, any re-application of
7, as a result of 7, does not yield any new worlds. Also note that application
of 7 would just give equivalent ∗-versions of this process.
(ii) We consider the use of RaTa with 7. Similarly to the case where RTaa

was in the Rabz position, from RaTa and Rabc we get Racx and RTxd, and
RTcy and Rayd, where by putting x = d and y = c we obtain pre-existing
R-relations. Also, when we consider Rabc and RcTc, we get RaTx and Rbxc,
and bTy and Rayc. Here, we put x = a and y = b to obtain pre-existing
R-relations, with help from 7.
(iii) In considering Raa∗T∗ with 7, from Rabc and Rcc∗T∗ we get Rac∗x and
RbxT∗, and Rbc∗y and RayT∗, where by putting x = b∗ and y = a∗ we ob-
tain pre-existing R-relations. However, with Raa∗T∗ in the Rabz position,
we would need an R-relation of the form RT∗cd, which is not formula-based,
as seen above. Unless c = T and d = T∗, RT∗cd is not generated by using
7, since ultimately one of the forms RT∗cd, RcT∗d or RcdT would need to be
formula-based. If we apply 7 to Raa∗T∗ and RT∗TT∗ we get RaTx and Ra∗xT∗,
and Ra∗Ty and RayT∗, where we can put x = a and y = a∗.

There are no other ways that new worlds might be introduced by 7 that would
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not be introduced otherwise, and so  is decidable, given the argument for
. ]

T 13 All the -logics are decidable.
P We just need to examine the addition of 12. A ∨ ∼A and of 12
together with 5. ∼A,A ∨ B ⇒ B, to ,  and . For 12, we add the
semantic postulate 5, together with the ordering relation ‘≤’, the valuation
condition 1 and 15. RT∗aa. We add the following rule 7 to the reductio
method.
7. We introduce the special ≤-relationship, indicated by a single arrow from
T∗ to T , in which every formula taking T at world T∗ is put with value T in
world T and every formula taking F at T∗ is put with value F at T . We also add
the R-relation RT∗aa, for all existing worlds a.
For d and d, 7 does not change the finitude of the worlds. For

d, we need to examine the effect of RT∗aa on 7. Firstly, RT∗aa and Rabc

yield RT∗bx and Raxc, and Raby and RT∗yc, where we can put x = b and
y = c. Secondly, consider RabT∗ and RT∗cc, whereupon RabT∗ (and RaTb∗) is
not formula-based and cannot be obtained through applications of 7, unless
it is one of RTT∗T∗ or RT∗T∗T∗. The first of these is covered by RTaa and the
second by RT∗aa above.
For 5, we add 12. T ≤ T∗, which becomes T = T∗ in the presence of 5.

We modify rule 3 and add rule 7 below.
3. a∗ is a new world for a 6= T .
7. We put T∗ identical with T .

For d and d and d, there is little change from their respective sys-
tems, d, d and d. ]

We next examine some of the major extensions of the -logics to see what
goes wrong with the above decidability arguments and why they might thus be
undecidable, though this argument itself will not constitute a proof as it deals
with only one method, viz. this particular reductio method. The logics , 
and  have already been proved to be undecidable by Urquhart [15]. In fact, he
proved undecidability for all logics between +15 and  [15, pages 1069–70].
Perhaps his methods can be extended to other systems where undecidability is
suggested in this paper but not already shown.
We start with d, which is d+6, where 6 is the rule,A ⇒ A → B →

B. Using simplified semantics, its corresponding semantic postulate is 17:
RaTa, which in the absence of 7 does lead to the following infinite sequence
of worlds. Let Rabc. Then, since RcTc, by applying 7, we get RaTx and
Rbxc, for some new x. Then consider Rbxc and RcTc, in which case, RbTx ′

and Rxx ′c, for some x ′. Further, Rxx ′c and RcTc yields RxTx ′′ and Rx ′x ′′c, for
some x ′′. Thus, an infinite sequence of worlds can be generated.
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We next consider d and d, obtained from d by the successive
addition of 12 and 5. With the addition of 12, we add the rule 7, which
includes the R-relation RT∗bb, for any b. However, we can combine this with
Raa∗T∗ using 7 to get Rabx and Ra∗xb, for some x, and Ra∗by and Rayb, for
some y. Using these new worlds x and y, Rxx∗T∗ and RT∗yy, and hence Rxyx ′

and Rx∗x ′y, and Rx∗yy ′ and Rxy ′y, for new x ′ and y ′. We can thus generate
an infinite sequence of worlds employing the rules 4, 7, 7 and 7 as they
stand. For d, we similarly use Raa∗T and RTbb.
We next consider any extension of d, d or d consisting of one or

more of the following axioms: A11, A13, A14, A15, with corresponding semantic
postulates: 4, 6, 7, 8. (However, for any such system L without 6 and
either without 12 or with 15, Ld = L.) These systems include , ,  and
, where  =  + 11,  =  + 13 + 14,  =  + 13 + 14,  =

+14. 4 and 7 clearly lead to an infinite sequence of worlds by successive
re-application. 6 and 8 are both of the form Raba, for some b. This form
generally leads to an infinite progression by applying 7 as follows. Raba and
Racd yields Racx and Rbxd, and Rbcy and Rayd. In turn, Raba and Racx

yields Racx ′ and Rbx ′x, and Raba and Racx ′ yields Racx ′′ and Rbx ′′x ′. The
avoidance of the form Raba is one of the reasons why newness is important in
rule 4.
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