Church-Rosser property and intersection types

George Koletsos, George Stavrinos


We give a proof via reducibility of the Church-Rosser property for the system D of λ-calculus with intersection types. As a consequence we can get the confluence property for developments directly, without making use of the strong normalization property for developments, by using only the typability in D and a suitable embedding of developments in this system. As an application we get a proof of the Church-Rosser theorem for the untyped λ-calculus.

Full Text:



  • There are currently no refbacks.