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1 
Formalizing and understanding reasoning processes in multi–agent situations
with imperfect information is one of the foremost tasks of modern artificial in-
telligence research. After its early phase (“good old–fashioned ” or “”
∗Both authors would like to thank the anonymous reviewers of this paper whose critical com-

ments on the original version resulted in a major revision of the system presented here. The first
author would like to thank Kobe University for the hospitality during his visit in March 2008
where the mentioned major revisions were done, partially supported by Grant-in-Aid for Scien-
tific Research (C) 19540127 of the Japan Society for the Promotion of Science. He also acknowledges
travel support of the European Commission (Early Stage Research Training Mono-Host Fellow-
ship GLoRiClass MEST-CT-2005-020841).
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using a phrase of John Haugeland), artificial intelligence did not pay much
attention to logic as a means towards achieving this end; logic and artificial
intelligence grew increasingly apart. In the past years, this development has
reversed: logic overcame its traditional focus and started to study phenomena
of interaction and interactive reasoning. This is best represented in the re-
search area called Logic and Games in which logicians used dynamic techniques
in order to study behaviour in game and communication situations and in what
Parikh calls Social Software [Par02]. These new developments allowed logicians
to provide theoretical insight in the general project of understanding reasoning
processes in multi–agent situations. As representative examples from the vast
literature, we should like to mention van Ditmarsch’s complete epistemic for-
malization of the game Cluedo® [vD00] and the Broersen–Dignum–Dignum–
Meyer deontic logic of deadlines [BDDM04].

These development have triggered a fruitful interaction between the Logic
and Games community and game and decision theorists who always had an in-
terest in analyzing what constitutes rational behaviour under uncertainty. One
particular interesting encounter between logic and game theory is the use of
belief revision techniques in the sense of [Gär92] as a means of analysis of
games.1 The game–theoretic analysis of rationality and the study of belief revi-
sion have in common that they have a normative hue; they are concerned with
questions of what constitutes rational behaviour and what would be quality
measures for rationality.

In this paper, we take a decidedly different route. We do not believe
that logic is the sole answer to deep and intriguing questions about human
behaviour, but we think that it might be a useful tool in simulating and un-
derstanding it to a certain degree and in specifically restricted areas of appli-
cation. We do not aim to resolve the question of what rational behaviour in
games with mistaken and changing beliefs is. Rather, we develop a formal and
abstract framework that allows us to reason about behaviour in games with
mistaken and changing beliefs leaving aside normative questions concerning
whether the agents are behaving “rationally”; we focus on what the agents do
in a game. In this paper, we are not concerned with the reasoning process of
the (ideal) economic agent; rather, our intended application is artificial agents,
e.g., autonomous agents interacting with a human user or with each other as
part of a computer game or in a virtual world. Arguably, when such agents
interact, the underlying epistemic and rationality assumptions are much less
important than the actual reasoning process used by the agents. Thus we as-

1The following is a list of relevant papers combining epistemic logic and game theory:
[Aum99], [BS03], [BB99], [Bra07], [dB04], [MBGVS97], [Pea84], [Sta98]. More specifically,
the papers [Sta98], [Boa04], and [Per] have pointed out the importance of belief revision in the
context of reasoning about solution concepts in games.
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sume the players are “programmed” to execute Zermelo’s backward induction
algorithm when it is their turn to move.2

We assume that each player has his or her own set of beliefs about the pref-
erences of the other players. It is with respect to these subjective preferences
that the players execute the backward induction algorithm assuming that the
preferences and beliefs of the players change over time. Our model highlights
what happens when such agents interact in the presence of changing beliefs
and preferences. Questions about rationality and the choice of belief revision
functions are left open to be determined in tune with the concrete application
by those who wish to apply our framework.

In § 2, we give a story of mistaken beliefs that is a typical example of the
situation in which we should want our formal setting to be applied. Then, in
§ 3, we give the definitions for our formal system and how to use this setting
to get a backward induction solution. In the following § 4, we then apply our
semantics to the story related in § 2 and give an analysis of it.

Our § 5 contains a discussion of related work and future projects. We dis-
cuss the advantages of our approach over existing approaches and indicate how
it can be connected to the existing literature.

2       
The following is a fictitious story in the style of a  drama. The reader can
imagine that this is the outline of a script. The reasoning processes referred to
in the story can be made visible to the audience by monologues (Walter talking
to himself in his car) or by conversations with some confidant or confidante.

Sue and Jeff have known each other for years. They studied computer sci-
ence together in the 1980s, and both started their own software companies in
the 1990s. Sue is married to Walter, an artist, and Jeff is married to Mary.
In the past years, Sue and Mary have become best friends.
However, unbeknownst to Sue, her husband Walter and Mary have an af-
fair. Walter, being absolutely dependant on the money of his wife, has no
intention of leaving her at all, and wants to avoid that she gets to know

2Backwards induction is the most intuitive method for solving extensive games. It was first
employed by Zermelo [Zer13] to show that the game of chess is determined and has since then
been extended to infinite games [GS53] and found many applications in game theory, mathe-
matics and computer science. Despite its naturalness, the rationality of backward induction has
been questioned, for instance in Rosenthal’s centipede games [Ros81], and in fact, experimental
results show that human players do not follow the backward induction strategy in these games
[MP92, NT98]. Stemming from an interesting debate between Ken Binmore [Bin96, Bin97]
and Robert Aumann [Aum95] about the underlying decision–theoretic assumptions of the back-
ward induction algorithm, much of the literature has focused on the epistemic conditions (e.g.,
common knowledge) and rationality assumptions (e.g., the players maximize subjective expected
utility) that guarantee the players follow the backward induction solution. Cf. [Per07] for a sur-
vey of the relevant literature and § 5.2 for some ideas how to reconcile our framework with this
line of research.
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about this affair at all costs. He believes that the fact that Sue and Mary
are best friends acts as a safeguard for his secret: Mary must be aware that
she will lose Sue as a friend if Sue finds out, and Mary clearly doesn’t want
that. So, Walter convinced himself that Mary will never ask him to sepa-
rate from Sue or—even worse—tell Sue about the affair.
Mary on the other hand is rather unhappy with Jeff, and really wants to
leave him. She believes that her friendship with Sue is robust enough to sur-
vive the fact that she has an affair with Walter. In her dreams, she imagines
a nice future with Walter. She is convinced that if she presses Walter enough,
he will finally leave Sue for her. She can make up with Sue afterwards.
One morning, she gives Walter an ultimatum: he should make up his mind
and choose between her and Sue. Walter is ultimately confused: he must
have misjudged Mary. Stuck in the traffic jam on his way to an appoint-
ment with a potential client, his mind raced: If he chooses Mary, then Sue
would know about their affair, and Mary would lose her best friend. What
was Mary thinking? The only rational explanation that he could come up
with was that Mary wanted to be with him so badly that she would give
up her friendship with Sue for it and expected him to say ‘yes’ to her ulti-
matum. . . Obviously, for financial reasons, Walter couldn’t leave Sue. But
he needed to be careful here: if he said no to Mary, would she tell Sue? No,
he reasoned, since then she would lose both Sue and him which is definitely
worse than just losing him. So, he’d be safe. Smiling, he used his cell phone
to call Mary and tell her that he would not leave Sue.
When she hung up the phone, Mary was fuming with anger. Apparently,
Walter wanted to stay with Sue. “Well, if that’s what he wants, then I must
have completely misjudged him. I should cut my losses, and at least be honest
to my best friend and tell her,” she reasoned, and acted accordingly.
And Mary was right in her judgement of Sue. The two women discussed the
matter, and when Walter returned from his appointment in the afternoon,
his paintings were standing on the front lawn of their house and the lock
of the front door had been changed. Walter gazed emptily at his paintings
searching for a logician to help him to figure out what had happened.

We should stress that human beings have no problems in analysing an
episode like this—with ease, they can make judgements like “Walter is wrong
about his judgement of Sue and Mary; after the ultimatum, there was no chance
of staying together with Sue anymore, but he could have saved his relationship
with Mary, hadn’t he misjudged his wife”.

For computational situations, we should like to be able to do the same
within some preferably simple formal system. Being able to formally access
the reasoning structure of episodes like this is crucial for the analysis of games
with mistaken beliefs.
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3 
Let I be the finite set of players whom we denote with boldface capital letters.
If ~P = 〈P0, . . . ,Pn〉 is a finite sequence of players symbols, we write ~PP for the
extension of the sequence by another player symbol P, i.e.,

~PP := 〈P0, . . . ,Pn,P〉.

A tree T is a finite set of nodes together with a (directed) edge relation (in
which any two nodes are connected by exactly one path). Let rootT denote the
root of the tree and tn(T) denote the set of terminal nodes of T . We write t ∈ T
if t is a node in the tree T . If t ∈ T , let succT (t) denote the set of immediate
T–successors of t. The  of the tree T is the number of elements of a
longest path in T , and we denote it by dp(T).

An    is a tuple 〈I, T, µ〉 where I is a set of players, T
is a tree and µ is a  . That is,

µ : T\tn(T)→ I,

where µ(t) = P indicates that it is P’s move at node t. We call total orders �
on tn(T) . We fix in advance a finite set P of preferences to be
considered in the formal analysis. A map � : I → P is called a 
 or  and we write �P for �(P). If 〈I, T, µ〉 is an extensive
game form, and � is a preference profile (if t1 �i t2, we say “player i prefers
the node t1 over node t2”), then we call

〈I, T, µ,�〉

an  . This model of a game is completely standard and discus-
sions can be found in any game theory text (for example, cf. [OR94]).

From now on, we fix an extensive game form G = 〈I, T, µ〉 and a finite set
of preferences P. We consider functions

S : T × I6dp(T) → PI,

i.e., functions that assign a description S(t,~P) to a node t in the tree and a finite
string ~P of player symbols (such as ABAC or also ∅), and call them .3

We now interpret the description S(t,∅) as the     at
position t. Note that the true state of affairs can change—for instance, if the
game reaches a certain position, players may change their preferences based on
what happened in the game so far.

If S(t,~P) is one of the descriptions defined by the state S, we interpret
S(t,P~P) as player P’s belief about S(t,~P). For instance, S(t,A) describes player

3The restriction of the length of the sequences to a number 6 dp(T) is not essential here. It
is just to ensure that states are finite objects. Our algorithm will never need the values of states
for longer strings, so we can safely cut the strings at this length.
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A’s belief about the true state of affairs at t, and S(t,AB) describes player A’s
belief about player B’s beliefs about the true state.

Note that this way, a state can be easily relativized to the subjective beliefs
of a particular player. If S is a state and P is one of the players, we can define

SP(t,~P) := S(t,P~P).

The result SP is essentially a state.4 A convenient way of presenting a state
S (since it presents the belief change in a particularly perspicuous way) is by
drawing the corresponding   t 7→ S(t,~P) (for non–terminal
nodes t); this is the way we shall present the state in our example in § 4.

Our notion of state is very abstract in that it does not take into account any
commonsense properties of belief or rationality. For instance, our definition of
state allows that S(t,∅)(A) 6= S(t,A)(A), i.e., player A has preferences that
he doesn’t believe he has; or S(t,A)(P) 6= S(t,AA)(P), i.e., a violation of pos-
itive introspection; or S(t,A)(B) = w, for some position t inconsistent with
B having the preference w. All of these counterintuitive properties might be
conceivably useful in some applications, but can easily be excluded by addi-
tional axioms if they are not. For instance, if S is a state, we could call a player
P  in S if for all sequences ~P, we have SP~P = SPP~P, and we can
call a state S  if all players are introspective in S. Another use-
ful property is that of egocentricity. In many applications, the agents assume
that their beliefs are common belief of all players. This can be formalized as
follows: a player P is called  in S if for all sequences ~P, we have
SP = SP~P, and we call a state S  if all players are egocentric in S.

If S(t,~P) 6= SP(t,~P), this is an instance of  ; if t ′ is a suc-
cessor of t in the tree T and we have SP(t,~P) 6= SP(t ′,~P), we call it an instance of
 . Even though we shall not use it in our example in § 4, we
can also handle changing preferences: if S(t,∅)(P) 6= S(t ′,∅)(P), then player P
  between t and t ′. If for all t, t ′ ∈ T and P, we have
S(t,~P) = SP(t ′,~P), we call S a      -
 which is an important special case, as it reconstructs the usual Zermelo
backward induction solution (cf. Proposition 1).

If G = 〈I, T, µ〉 is an extensive game form, a   is a tuple 〈G, S〉
where S is a state. Given a game model 〈G, S〉, we can now fully analyze the
game and predict its outcome (assuming that the players follow the backward
induction solution). In order to do this analysis, we shall construct labellings
`S~P

: T → tn(T) where `S~P
is interpreted as the subjective belief relative to

~P of the outcome of the game if it has reached the node t. For instance, if
`SA(t) = t∗ ∈ tn(T), then player A believes that if the game reaches t, the
eventual outcome is t∗.

4The only difference is that it is only defined for sequences of length 6 dp(T) − 1. This is
due to our technical restriction discussed in Footnote 3.
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  . If t is a terminal node, we just let `U := t for
all states U. In order to calculate the label of a node t controlled by player
P, we need the P–subjective labels of all of its successors. More precisely: If
t ∈ T , µ(t) = P and we fix a state U, then we can define `U as follows: find the
U–true preference of player P, i.e., w = U(t,∅)(P). Then consider the labels
`UP(t

′) for all t ′ ∈ succ(t) and pick the w–maximal of these, say, t∗. Then
`U(t) := t∗. Concisely, `U(t) is the U(t,∅)(µ(t))–maximal element of the set
{`Uµ(t)

(t ′) ; t ′ ∈ succ(t)}.

      . After we have defined all subjec-
tive labellings, the true run can be read off recursively. Since our labels are the
terminal nodes, for each t with µ(t) = P and S, there is a unique t ′ ∈ succ(t)

such that `SP(t
′) = `S(t). Starting from the root, take at each step the unique

successor determined by `S(t) until you reach a terminal node. Note that this
procedure will not follow the subjective tree labellings: player P might believe
that the outcome of the game is t∗ when the game reaches t ′, but the next
move is determined by player P∗ = µ(t ′) who will use his or her own subjective
labelling `SP∗ in order to determine the next successor.
 1 If S is a state of correct and unchanging beliefs, then our algorithm
reproduces the usual backward induction solution.

Proof: An easy inductive argument shows that if S is a state of correct and
unchanging beliefs, then for all ~P, we have `S = `S~P

. We also know that for any
P, t and U = S~P, U(t,∅)(P) is the true preference of player P, say, �P.

Thus, for any non–terminal node t, `U(t) is the �µ(t)–maximal element of
the set {`U(t ′) ; t ′ ∈ succ(t)}. This is exactly the definition of the backward
induction labelling.

 2 If S is a state and P is egocentric in S, then for all sequences ~P, we
have that `SP = `SP~P

.

Proof: We prove `SP(t) = `SP~P
(t) by induction on the depth of the node t. For

terminal nodes t, the claim is true by definition. If t is nonterminal, then `SP(t)

is the SP(t,∅)(µ(t))–maximal element of the set {`SPµ(t)
(t ′) ; t ′ is an immediate

successor of t}, and `SP~P
(t) is the SP~P(t,∅)(µ(t))–maximal element of the set

{`SP~Pµ(t)
(t ′) ; t ′ is an immediate successor of t}. But since P is egocentric, we

have SP(t,∅)(µ(t)) = SP~P(t,∅)(µ(t)) and `SPµ(t)
(t ′) = `SP~Pµ(t)

(t ′) = `SP(t
′) by

induction hypothesis, and thus the sets of labels of successors are identical.

4    
In the following, we now transform the story presented in § 2 into a state that
our formal system can deal with. Actually, we do not need to give a full state
but can restrict ourselves to those values of the function S that are relevant
for the algorithm given in § 3. Note that this analysis cannot be done in an
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Figure 1: The game tree for the story about Walter, Mary and Sue.

automated way: a human theorist is needed to transform the natural language
story into its formal counterpart. The natural language of the story has to be
evaluated into categories of ‘relevant’ and ‘irrelevant’ for the plot line. For in-
stance, there is a potential agent in our story, Jeff, who is structurally irrelevant
for the outcome. Also, there are a number of statements that could indicate
choices of the agents (“One morning, she gives Walter an ultimatum. . . ”: could she
have done it in the evening? “. . . he used his cell phone to call Mary. . . ”: could he
have used a pay phone?), and the human modeller will have to decide whether
they are relevant for the plot or not. In general, this is a subtle decision process
that could require a thorough analysis of the text of the story.

In our story, there are three relevant agents {W,M, S}. By analyzing the
decision points in the story line (i.e., those moments in which one of the agents
makes a decision about an action), we can see that there are five of those,
corresponding to the non–terminal nodes in our game tree. We see easily that
there are six conceivably possible outcomes in the story (the terminal nodes
in the game tree). The game tree that results from this analysis of the story
is given in Figure 1. In order to have an easily recognizable notation for the
six possible outcomes, we use the notation � to indicate that a relationship
is intact and! to indicate that it is ended, and list the terminal nodes by the
status of the relationships in the order S–W, M–W and
M–S; for instance, !�! stands for “Walter left Sue, is together with
Mary, and Sue hates Mary”. Since each outcome uniquely identifies one of the
terminal nodes, we shall refer to the terminal nodes by these labels.
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Figure 2: The description tree t 7→ S(t,∅) of true preferences

By analyzing the decision procedures in the story further, we realize that
there are only five preferences relevant for the analysis of the story: the true
preferences of all three players, the mistaken beliefs of Walter about Sue’s pref-
erences at the beginning of the game, and the mistaken beliefs of Mary about
Walter’s preferences at the beginning of the game. We denote these prefer-
ences by �W, �M, �S, �S∗, and �W∗, respectively:

��� �W �!� �W !�� �W !�! �W !!� �W !!!

!�� �M !!� �M ��� �M �!� �M !�! �M !!!

�!� �S !!� �S !�� �S ��� �S !!! �S !�!

�!� �S∗ !!! �S∗ ��� �S∗ !�! �S∗ !�� �S∗ !!�

!�� �W∗ !�! �W∗ ��� �W∗ �!� �W∗ !!� �W∗ !!!

In our situation, a description is a triple of preferences representing the
preferences of Walter, Mary, and Sue. For instance, the true description at
rootT is the triple

S(rootT ,∅) := 〈�W,�M,�S〉.

As mentioned before, we shall give the state S mostly in terms of the descrip-
tion trees. We start with the true state of affairs in Figure 2. Note that in this
tree, the description at each node is the same. This corresponds to the fact
that there are no changing preferences in our example.

We continue with Walter’s beliefs. Walter’s first order belief is just
〈�W,�M,�S∗〉 at each node: he is wrong about Sue, but correct about Mary.
The belief revision that Walter undergoes in the story happens on the level
of his second order beliefs: we give the description tree for SWM in Figure
3 showing his belief revision at stage t0. He was originally egocentric, as
SWM(rootT ,∅) = SW(rootT ,∅), but realizes after Mary plays  that Mary
cannot be right in her predictions of his own actions. He therefore corrects
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Figure 3: The description tree t 7→ S(t,WM) = SWM(t,∅) of Walter’s beliefs
about Mary’s beliefs. The beliefs that cannot be extracted from the story are
marked by “? ? ?”.

his beliefs about her beliefs to �W∗ (which is what Mary actually believes). Un-
fortunately for him, he is still wrong about Mary’s belief about Sue.5 Note that
we do not give a value for S(t3,WM): abstractly, we know that Walter must
undergo yet another belief revision here, as Mary’s action  is inconsistent
with the belief that Mary acts according to the preference �M and the belief
that Sue according to �S∗. However, in the story, we just learn that Walter is
confused (“Walter gazed emptily at his paintings searching for a logician to help him
to figure out what had happened”) and are thus not able to reconstruct a concrete
belief revision for Walter at this step. Of course, since Walter does not move
after t3, his beliefs are not relevant for the outcome of the game anymore.

The final description tree is that of Mary in Figure 4. She starts off with
correct beliefs about Sue and false beliefs about Walter. After Walter plays 
in t0, Mary corrects her belief about Walter. For the calculation of the sub-
jective labellings, we furthermore need the states SMW and SMWM. The story
suggests that Mary has no complicated iterated beliefs and that neither Walter
nor Mary fail introspection. Therefore, we assume that Mary is egocentric and
that Walter is introspective in the sense of § 3. Therefore, SMW = SMWM = SM.

Based on the description trees of S, SM, SW, SMW, SWM, and SMWM, we shall
now proceed to compute the values of `U(t) for the relevant statesU. Under an
additional assumption of weakened egocentricity (see S 5), we can calculate
some additional values.

5The fact that Walter can be right about Mary’s preferences but wrong about his beliefs
about what she’ll do is a crucial point in our algorithm. Knowing Mary’s preferences does not
allow Walter to predict what she will do: since he is wrong about Sue’s preferences and (more
importantly) about Mary’s beliefs about Sue’s preferences, he cannot correctly predict the out-
come of the game in Mary’s subjective labelling.
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Figure 4: The description tree t 7→ S(t,M) = SM(t,∅) of Mary’s beliefs. This
is also the description tree of SMW and SMWM.

S 1. Terminal nodes. By definition, for all states U, `U(t) = t if t ∈ tn(T).

S 2. Nodes of depth one. There are two nodes of depth one, viz. t2 and t3.
In these cases, we can simply exploit the recursive definition and S 1 to get
the following characterizations:

`U(t2) =

{
!�� if U(t2,∅)(S) =�S
!�! if U(t2,∅)(S) =�S∗,

`U(t3) =

{
!!� if U(t3,∅)(S) =�S
!!! if U(t3,∅)(S) =�S∗ .

In particular, we get the following values for our six states under consider-
ation:

`S(t2)

`SM(t2)

`SMW(t2)

`SMWM(t2)

 = !��,

`S(t3)

`SM(t3)

`SMW(t3)

`SMWM(t3)

 = !!�,

`SW(t2)

`SWM(t2)

}
= !�!, `SW(t3)

`SWM(t3)

}
= !!!.

S 3. Nodes of depth two. The node t1 is the only node of depth two and it is a
node controlled by Mary. Therefore, in order to calculate `U(t1), we need the
labels of the immediate successors of t1 in the labelling `UM . The immediate
successors of t1 are �!� and t3. By S 1, `U(�!�) = �!� for all U. By
S 2, we know the value of `UM(t3) for U ∈ {S, SW, SMW}. A glance at the
table in S 2 gives us the values
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`SM(t3) = `SMWM(t3) = !!�,
and `SWM(t3) = !!!.

So, in the first two cases, we have to compare �!� and !!� according
to the preference that the state U assigns to Mary. We see that S(t1,∅)(M) =

SMW(t1,∅) = �M and get

`S(t1) = `SMW(t1) = !!�.

In the case of SW, we have to compare !!! and �!� according to �M =

SW(t1,∅)(M), and get
`SW(t1) = �!�.

Assuming Mary’s introspection, we can use `MM(t3) = !!� and calculate
`M(t1) = !!�.

S 4. Nodes of depth three. The only node of depth three is the node t0
controlled by Walter. Its immediate successors are t1 and t2, and thus we
need `UW(t1) and `UW(t2) for a state U in order to calculate `U(t0). Checking
the calculations of S 2 (for t2) and S 3 (for t2), we see that we have
determined these labels for U ∈ {S, SM}, and received the values

`SW(t1) = �!�, `SMW(t1) = !!�,

`SW(t2) = !�!, `SMW(t2) = !��.

ForU = S, we compare�!� and!�! according to�W and get `S(t0) = �!�,
for U = SM, we compare !!� and !�� according to �W∗ and get `SM(t0) =

!��.
Using Walter’s introspection (and thus using `SWW(t1) = �!� and

`SWW(t2) = !�!), we can also calculate `SW(t0) = �!�.

S 5. The root. The root is a node controlled by Mary, so we need to compare
`UM(t0) and `UM(���) = ���. We only have `SM(t0) = !��, so we check
that !�� �M ���, and get `S(rootT ) = !��.

As before, under the assumption of Mary’s introspection, we get that
`SMM(t0) = !��, and thus `SM(rootT ) = !��.

To calculate `SW(rootT ), we need to make the additional (but very mild
and realistic) weakened egocentricity assumption of SWM~P = SWM. Then, go-
ing through S 1 to S 4 again, we can calculate `SWMWM(t3) = !!!,
`SWMW(t2) = !�!, `SWMW(t1) = !!!, `SWM(t0) = !�!, and finally
`SW(rootT ) = ���.

We finished our calculation of labels. It it useful to note again that the la-
belling functions behave quite differently from the usual backward induction
labellings. In backward induction with common knowledge of the true pref-
erences (in the notation of § 3, this means a state S of correct and unchanging
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Figure 5: The labelling t 7→ `S(t).

beliefs), you get one labelling corresponding to `S that you can use to read off
the moves of the game: we discussed this as a special case of our set-up in
Proposition 1. In particular, in this unique labelling each node has at least one
successor with the same label. In our case, the `U–label at t only indicates
the belief (relative to a given state U) of the player µ(t) controlling the node
about the eventual outcome. As a consequence, we lose the direct connection
between `U(t) and `U(t ′) for t ′ ∈ succ(t). Since `U(t) corresponds to µ(t)’s
beliefs, the value of `U(t) is connected to `Uµ(t)(t

′) instead.
Consider the labelling `S in Figure 5 where the nodes rootT and t0 have

no successor nodes with the same label. For instance, in order to understand
`S(t0), we have to look at the labelling `SW (as given in Figure 6), realizing that
the value `S(t0) = �!� corresponds to the �W–maximal label among the `SW–
values of the successors of t0.

We shall now use the labellings calculated in order to give an interpre-
tation of the story and explain the course of events. We start in the node
rootT which is a node in which Mary has to play, and consider Mary’s subjec-
tive labelling `SM as given in Figure 7. Mary believes that Walter will answer
 to her ultimatum, corresponding to “She is convinced that if she presses Wal-
ter enough, he will finally leave Sue for her.” In Figure 7, this is represented by
`SM(t0) = !��. Mary’s belief that “she can make up with Sue afterwards” is rep-
resented by `SM(t3) = !!� and `SM(t2) = !��. The label `S(rootT ) = !��

tells us that Mary plays  in her first move (“One morning, she gives Walter an
ultimatum: he should make up his mind and choose between her and Sue.”).

In the story, we can now read the deliberations of Walter. He realizes that
he had wrong beliefs about Mary (“Walter is ultimately confused: he must have mis-
judged Mary”) and revises his belief as discussed above. He now reasons about
Mary’s actions if he plays  as the next move: “if he said no to Mary, would she

Benedikt Löwe and Eric Pacuit, “An abstract approach to mistaken and changing beliefs”, Australasian Journal of Logic (6) 2008, 162–181

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 175

���

�
��

����� ’
===

��===

�!�

ppppp

xxppppp 
NNNNN

&&NNNNN

���

�!�

���

����� ’
===

��===

!�!

���

����� ’
===

��===

!!!

���

����� ’
===

��===

�!� !�! !��

!!! !!�

Figure 6: The (partial) labelling t 7→ `SW(t). The label at t0 has been computed
under the assumption of introspection; the label at rootT has been computed
with the additional assumption of SWM~P = SWM (cf. S 5).

tell Sue? No, he reasoned, since then she would lose both Sue and him which is definitely
worse than just losing him.” corresponds to `SW(t1) = �!�. As a consequence,
Walter plays  in the second move (“Smiling, he used his cell phone to call Mary
and tell her that he would not leave Sue”).

The third move is now Mary’s again who revises her beliefs about Walter
(“Well, if that’s what he wants, then I must have completely misjudged him.”) She fol-
lows her preferences and beliefs about Sue’s preferences: “I should cut my losses,
and at least be honest to my best friend and tell her,” she reasoned, and acted accordingly.”
Mary plays  in the third move.

Finally, Sue follows Mary’s predictions and plays ’: “And Mary was
right in her judgement of Sue. The two women discussed the matter, and when Walter
returned from his appointment in the afternoon, his paintings were standing on the front
lawn of their house and the lock of the front door had been changed.”.

As part of our formal analysis, we can now also go beyond describing the
behaviour of agents. For instance, the fact that Walter is surprised by Mary’s
action  is represented by `SW(rootT ) = ��� (“Walter convinced himself that
Mary will never ask him to separate from Sue”). We can also do counterfactual
reasoning about the storyline in terms of our labelling. This would become
relevant for programming the reasoning of artificial agents based on our system
(cf. § 5.5).

5 ,     
With the formal analysis of §§ 3 and 4, we fulfilled the goal mentioned at the
end of § 2: we have a formal system that allows to mimic the intuitive reasoning
of human beings about the game situation. However, the definition of a formal
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Figure 7: The (partial) labelling t 7→ `SM(t). The value at t1 has been computed
under the assumption of introspection as in S 3.

system provides only the very first step. A lot of open questions and problems
remain.

5.1  
There are many other models for game–theoretic reasoning in the presence of
uncertainty, and it would be wrong to claim that they cannot deal with the ex-
ample given in this paper at least as well as our abstract framework. It should
be stressed that the elaborate example in this paper is not more than that: an
example to show how our algorithm works; we do not claim that our approach
is the first one that can explain the behaviour of the agents in stories like this.
We also do not claim that our algorithm adds to our understanding of game
theory in general: game–theoretically, it is just the straightforward application
of the basic idea of backward induction to the situation of changing and mis-
taken beliefs.

The benefit of our framework is its extraordinary simplicity: we make the
player’s preferences the basic entities of the entire algorithm and encode the
belief change into the notion of state, thus avoiding to have to discuss the belief
change functions. Because of this, we get a very parsimonious and flexible
algorithm that can be applied to many different situations.

Closest in spirit to our game–theoretic analysis is the excellent paper
[Fei05] in which he provides a powerful language to talk about dynamic games.
Clearly, Feinberg’s system is able to provide a clear analysis of our example
story. Feinberg does provide notions of rationality for his system and is thus
able to derive that the agents will follow the backward induction strategy under
certain conditions [Fei05, § 4.2]. This relates closely to our § 5.2.
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Our parsimonious language suggests an affinity with the dynamic logic so-
lutions of logical puzzles. A number of modal logic approaches to reasoning
about belief revision and preferences exist; among these, [vDL07], the epis-
temic preference models of [vBL07] (based on Hansson’s [Han90] logics of prefer-
ences) and the proba–doxastic logic of [Auc05a, Auc05b] come closest to our
approach. We discuss this relationship more closely in § 5.3.

5.2 – .
Our analysis presupposes backward induction. In order to connect our work
to the large body of research on the foundations of rationality mentioned in
§ 1, one could turn this around by making descriptions tuples of strategies in-
stead of preferences (i.e., S(t,P)(Q) = Σ meaning that in state S, player P be-
lieves that player Q follows the strategy Σ), and then analyze properties of the
players (corresponding to rationality) that will ensure that players follow the
subjective backward induction strategy. If we build a logical language on top of
our system with some expressive power, we should make our system resemble
Feinberg’s subjective framework from [Fei05]. Under appropriate assumption,
it is likely that analogues of Feinberg’s subjective conditions on rationality imply-
ing backward induction can be found for our system and analogues of Aumann’s
classic theorem [Aum95] and Feinberg’s [Fei05, Proposition 10] can be proved.

5.3      .

As indicated in § 5.1, the purely combinatorial character of our algorithm sug-
gests a very close relation to the techniques of dynamic epistemic logic, and
it is likely that there is a translation of our algorithm into the framework of
dynamic epistemic logic.

Since backward induction can be expressed in dynamic epistemic logic
[vB01] and our algorithm is just based on a dynamic doxastic system and back-
ward induction, it should be possible to do for our algorithm what van Dit-
marsch did to belief revision in his [vD05].

5.4    .
A conceptual system using our formal analysis could be used to analyze story
lines. The question of what constitutes an interesting story has become more
interesting for computer scientists as part of game design. Obviously, a large
part of the entertainment that people get out of watching crime stories on 
or playing story–based games is unrelated to the actual plot of the stories, and
rests in properties superficial to the actual story (such as the graphics anima-
tion in computer games or the quality of the actor in a  drama). However,
we believe that at least part of the entertainment derives from interesting epis-
temic story twists, either for the viewer or for the characters in the story. This
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type of analysis has been implemented in the Story Understanding community
[Rum75, Leh81, Mue08].

Our simple formal analysis provides an abstract means of classifying story-
lines based on their epistemic and doxastic properties that could be more per-
spicuous and easy to handle than the known Story Understanding systems. An
empirical project based on this would be to analyze a large sample of stories
(e.g., plots of crime stories) using our framework and find out whether certain
formal patterns occur more frequently than others. For a first step towards this
goal, cf. [LPS08] in which the authors investigate ten narratives from the series
CSI: Crime Scene Investigation™ and identify a small number of formal building
blocks using the system of this paper.

5.5  .

The algorithm given in this paper could be used by artificial agents in computer
games to mimic human behaviour. Epistemically more complicated computer
games could feature artificial agents with more involved goals (such as trying
to bring the human player to perform a certain action or trying to get a certain
piece of information from the human player without the player being aware of
this) that requires them to assess the doxastic situation.

An alternative use of our algorithm in game design could be connected
to the project described above: if our formal model allows a classification of
those epistemic story lines that human audiences find interesting as discussed
in § 5.4, this information could be used to reverse engineer story lines (for in-
stance for auto–generation of subplots in a computer game) in order to avoid
story lines that are too straightforward or too complicated for the human play-
ers to enjoy.
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